
1 of 3 

CSc 110, Spring 2018 
Programming Assignment #12: Recommendation System 

Due Tuesday, May 2, 2017, 7:00 PM 

thanks to Susan Rodger of the Duke and Marty Stepp of Stanford 

This program focuses on using data structures in complex ways.  Turn in a file named recommender.py on the Projects 

section of the course web site. You will need several txt files containing ratings from the web site; place them in the same 

folder as your program. 

Background: 

If you've ever bought a book online, the bookseller's website has probably told you what other books you might like. This 

is handy for customers, but also very important for business. In 2010, online movie-rental company Netflix awarded one 

million dollars to the winners of the Netflix Prize. The competition simply asked for an algorithm that would perform 10% 

better than their own algorithm. Making good predictions about people's preferences was that important to this company. It 

is also an important current area of research in machine learning, which is part of the area of computer science called 

artificial intelligence. 

What you will do: 

So how might we write a program to make recommendations for books? Consider a user named Carlos. How is it that the 

program should predict books Carlos might like? The simplest approach would be to make almost the same prediction for 

every customer. In this case the program would simply calculate the average rating for all the books in the dataset and 

display the highest rated book. With this simple approach no information about Carlos is used.  

We could make a better prediction about what Carlos might like by considering his actual ratings in 

the past and how these ratings compare to the ratings given by other customers. Consider how you 

decide on movie recommendations from friends. If a friend tells you about a number of movies that 

s(he) enjoyed and you also enjoyed them, then when your friend recommends another movie that you 

have never seen, you probably are willing to go see it. On the other hand, if you and a different friend 

always tend to disagree about movies, you are not likely to go to see a movie this friend recommends. 

Your task for this project is to write a program that takes people's book ratings and makes book 

recommendations to them using both techniques described above. We will refer to the people who 

use the program as "users". 

Implementation Details: 

Your program will read user date from a file that contains sets of three lines. The first will contain a 

username, the second a book title and the third the rating that user gave the book. An example is 

displayed on the right.  

When your program starts it should read through the file and create a list with one occurrence of each 

book in the file. For example, the file at right might produce the following list: 

['1984', 'Cats', 'Harry Potter', 'Animal Farm', 'Watership Down', 'The Hobbit'] 

Note that the order of the books does not matter. We suggest that you create this list by putting all 

books in the file into a set and then casting that set to a list. If you have a variable called data that 

stores a set, you can turn it into a list by writing data = list(data).  

Once you have this list, create a dictionary to store the rating data and loop through the file again. 

This time add each person in the file as a key to the dictionary. The value that is associated with them 

should be a list the same length as the list of books you created in your first pass through the file. 

You should store the rating at the same index that book’s name appears at in in the list of books. For 

example, when the first three lines of the file on the right are read, we would add a mapping from the 

key Bob to a value of [1, 0, 0, 0, 0, 0]. Books that the user has not rated (or whose ratings 

we have not read yet, as in this case) should be represented by 0s.  

The dictionary created with the file at right and the list of books written above would be as follows: 

{ 'Kalid'  : [0, 0, 1, -3, 3, 0],  'Carlos' : [-5, 0, 3, 1, 0, 0],  

  'Suelyn' : [1, 0, 1, -3, 0, 0],  'Bob'    : [0, 1, -3, 0, 0, 1]  } 

 

Bob 

Cats 

1 

Suelyn 

Harry Potter 

1 

Carlos 

Animal Farm 

1 

Kalid 

Watership Down  

3 

Carlos 

1984 

-5 

Bob 

Harry Potter  

-3 

Suelyn 

1984 

1 

Carlos 

Harry Potter 

3 

Suelyn 

Animal Farm 

-3 

Bob 

The Hobbit 

1 

Kalid 

Animal Farm 

-3 

Kalid  

Harry Potter 

1 

http://www.netflixprize.com/


2 of 3 

Now your program is ready to make recommendations. It should output the following message: 

Welcome to the CSC110 Book Recommender. Type the word in the 

left column to do the action on the right. 

recommend : recommend books for a particular user 

averages  : output the average ratings of all books in the system 

quit      : exit the program 

next task? 

The prompt should be repeated after every task is finished. 
 

Averages 

If the user selects the averages option the program should output all of 

the books in the file sorted by average rating from highest to lowest. For 

example, for the file on the previous page you should output the listing 

on the right.  

We suggest that you figure this out by building up a list of tuples 

containing the average rating for a book first and the title of that book 

second. You can build up this list by going through the list of books one 

at a time and for each person in the dictionary adding up their rating of that book and counting how many people in the 

dictionary rated it something other than 0. The average score for that book is the sum scores divided by the count of non-

zero ratings. Once you have created this list you can sort it by using the list’s sort function.  

Since the averages will stay the same throughout the run of the program you may want to calculate them once at the start of 

the program.  

Recommendations 

When the user selects the recommend option the program should first prompt the user for the name of the user that the 

program wants recommendations for as follows: 

user? 

If the name that the user types in isn’t in the dictionary of ratings, the program should output the same list of books as when 

the user selects the averages option. 

If the name the user inputs is in the dictionary of ratings you should use the data in the dictionary to find the other users that 

are most similar to the user you are looking for recommendations for.  

The first step to do this is to calculate the similarities between your user and the other users. We will use the dot product 

between the users’ lists of ratings to calculate their similarity. This means that we will multiply each element in your user’s 

list with the element at the same index in the other user’s list and sum the result. For example, if we were looking for a 

recommendation for Kalid we would do the following to calculate his similarity to Carlos: 

(0 * -5) + (0 * 0) + (1 * 3) + (-3 * 1) + (3 * 0) + (0 * 0) = 0 + 0 + 3 + -3 + 0 + 0 = 0 

Compute this similarity for each user in the dictionary. Store tuples containing first the similarity number and second the 

name of the other user in a list. You can use the list sort function to sort this list. 

Note that the user that you are looking for will always be in the dictionary. We are not interesting in how similar the user is 

to themselves. You may find it helpful not to add the user to the list or to remove them after sorting. Note that the user will 

always be most similar to themselves.  

Now that we have a list of the most similar users, we can use this to figure out which books to recommend. To generate 

recommendations take an average of the ratings of the three users with the highest similarity to the user you are looking for.  

To average the ratings create a new list the same length as the list of books and filled with 0s. Loop through this list. For 

every index of this list loop through the first three users, add up their ratings and then divide by the number of non-zero 

ratings. If there are no non-zero ratings for a book you should not divide as you will get a divide by 0 error.  

Once you have calculated these averages, create a list of tuples that contain first the average rating and then the book title 

for all books that have non-zero ratings in the averages list. Then, sort this list. Now you have a list of books to recommend. 

 

Note that it must be possible for the user to choose options multiple times in any order and get the correct results each time.   

Your program should match the expected output files provided on the course web page exactly. 

Watership Down 3.0 

The Hobbit 1.0 

Cats 1.0 

Harry Potter 0.5 

Animal Farm -1.6666666666666667 

1984 -2.0 



3 of 3 

Development Strategy and Hints:  

We suggest that you complete the assignment in the order described above.  

You will find the list sort function very helpful for this assignment. The sort function sorts elements in a list from smallest 

to largest. If the list contains tuples it sorts by the first element in the tuple. Therefore, it is very important to order your 

tuple contents as described in the instructions above. If you have a variable called my_list, the following code will sort it: 

my_list.sort(). Note that sort alters the list, it doesn’t return a new list.  

Use print statements to view the state of your structures. Create small input files for yourself to help you debug.  

You should use our Output Comparison Tool to see that your outputs match what is expected. 

Style Guidelines and Grading: 

Part of your grade will come from appropriately using data structures and following the algorithms described in this 

document.   

Redundancy is always a major grading focus; avoid redundancy and repeated logic as much as possible in your code. Divide 

your code into a set of functions that captures the structure of the program.  

Follow good general style guidelines such as: appropriately using control structures like loops and if/else statements; 

avoiding redundancy using techniques such as functions, loops, and if/else factoring; good variable names, and naming 

conventions; and not having any lines of code longer than 80 characters. You may have no global variables (except 

constants) and you may not nest functions inside other functions 

Comment descriptively at the top of your program, each function, and on complex sections of your code.  Comments should 

explain each function’s behavior, parameters and returns.   

 

 

 


