
CSc 110, Spring 2018
Lecture 9: Parameters, Graphics and Random

Adapted from slides by Marty Stepp and Stuart Reges

Exercise: multiple parameters

def main():

print_number(4, 9)

print_number(17, 6)

print_number(8, 0)

print_number(0, 8)

def print_number(number, count):

for i in range(0, count):

print(number, end="")

print()

What does this output?

Value semantics

• value semantics: When numbers and strings are passed as
parameters, their values are copied.
• Modifying the parameter will not affect the variable passed in.

def strange(x):

x = x + 1

print("1. x = ", x)

def main():

x = 23

strange(x)

print("2. x = ", x)

...

Output:

1. x = 24

2. x = 23

Graphical objects

We will draw graphics in Python using a new kind of object:

• DrawingPanel: A window on the screen.
• Not part of Python; provided by the instructor. See class web site.

Named
colors

Chart credit Smith.edu

http://www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter

Custom colors

• You can construct custom colors using hex.
• # followed by six numbers 0 – 9 and letters A – F

• A is 10, B is 11 and so on

• #000000 is black

• #FFFFFF is white

• Colors get darker as the number gets lower

• The first two digits are the amount of red, the next two green, the last two blue

panel = DrawingPanel(80, 50, background="#3367D3")

Drawing shapes

Function name Description

p.draw_line(x1, y1, x2, y2) line between points (x1, y1), (x2, y2)

p.draw_oval(x, y, width, height) outline largest oval that fits in a box of size
width * height with top-left at (x, y)

p.draw_rect(x, y, width, height) outline of rectangle of size width * height
with top-left at (x, y)

p.draw_string("text", x, y) text with upper-left at (x, y)

p.fill_oval(x, y, width, height) fill largest oval that fits in a box of size
width * height with top-left at (x,y)

p.fill_rect(x, y, width, height) fill rectangle of size width * height with
top-left at (x, y)

p.set_color("color") set the default color to "color"

• You can pass an additional "color" to any shape as a last parameter
p.draw_rect(50, 100, 60, 60, "red")

Coordinate system

• Each (x, y) position is a pixel ("picture element").

• (0, 0) is at the window's top-left corner.
• x increases rightward and the y increases downward.

• The rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

(200, 100)

y+

Superimposing shapes

• When two shapes occupy the same pixels, the last one drawn is seen.

from DrawingPanel import *

def main():

p = DrawingPanel(200, 100, background="light gray")

p.fill_rect(10, 30, 100, 50, "black")

p.fill_oval(20, 70, 20, 20, "red")

p.fill_oval(80, 70, 20, 20, "red")

p.fill_rect(80, 40, 30, 20, "cyan")

Drawing with loops

• The x1, y1, w, h expression can contain the loop counter, i.

panel = DrawingPanel(400, 300, background="yellow")

for i in range(1, 11):

panel.fill_oval (100 + 20 * i, 5 + 20 * i,

50, 50, "red")

panel = DrawingPanel(250, 220)

for i in range(1, 11):

panel.draw_oval (30, 5, 20 * i, 20 * i, "magenta")

Drawing w/ loops questions

panel = DrawingPanel(160, 160)

for i in range(0, 10):

panel.draw_rectangle (20, 20 + 10 * i,

100 – 10 * i, 10)

• Write variations of the above
program that draw the figures
at right as output.

Drawing w/ loops answers

• Solution #1:
panel = DrawingPanel(160, 160)

for i in range(0, 10):

panel.draw_rectangle (20 + 10 * i, 20 + 10 * i,

100 - 10 * i, 10)

• Solution #2:
panel = DrawingPanel(160, 160)

for i in range(0, 10):

panel.draw_rect(110 - 10 * i, 20 + 10 * i,

10 + 10 * i, 10)

Drawing with functions

• To draw in multiple functions, you must pass DrawingPanel.

def main():

panel = DrawingPanel(200, 100, background="light gray")

draw_car(panel)

def draw_car(p):

p.fill_rect(10, 30, 100, 50, "black")

p.fill_oval(20, 70, 20, 20, "red")

p.fill_oval(80, 70, 20, 20, "red")

p.fill_rect(80, 40, 30, 20, "cyan")

Pseudo-Randomness

• Computers generate numbers in a predictable way using a
mathematical formula

• Parameters may include current time, mouse position
• In practice, hard to predict or replicate

• True randomness uses natural processes
• Atmospheric noise (http://www.random.org/)
• Lava lamps (patent #5732138)
• Radioactive decay

http://www.random.org/

Random

• random generates pseudo-random numbers.
• random can be accessed by including the following statement:
import random

• Example:

import random

random_number = random.randint(1, 10) # 1-9

Method name Description

random.random() returns a random float in the range [0, 1)

in other words, 0 inclusive to 1 exclusive

random.randint(min, max) returns a random integer in the range [min, max)

in other words, min to max-1 inclusive

Generating random numbers

• To get a number in arbitrary range [min, max] inclusive:

random.randint(min, max)

• Where size of range is (max – min + 1)

• Example: A random integer between 4 and 10 inclusive:

n = random.randint(4, 10)

