
CSc 110, Spring 2018
Lecture 21: Line-Based File Input

Adapted from slides by Marty Stepp and Stuart Reges

Gas prices question

• Write a program that reads a file gasprices.txt
• Format: Belgium $/gal US $/gal date …

8.20 3.81 3/21/11 8.08 3.84 3/28/11 ...

• The program should print the average gas price over all data in the file
for both countries:

Belgium average: 8.3

USA average: 3.9

Multiple tokens on one line
You can use read to read the whole file into a string and the split

function to break a file apart

• str.split() - splits a string on blank space

• str.split(other_str) - splits a string on occurrences of the
other string

>>> f = open("hours.txt")

>>> text = f.read()

'1 2\n45 6\n'

>>> f = text.split()

['1', '2', '45', '6']

Looping through a file

• The result of split can be used in a for ... in loop

• A template for reading files in Python:

file = open("filename")

text = file.read()

text = text.split()

for line in text:

statements

Gas prices solution

def main():

file = open("gasprices.txt")

belgium = 0

usa = 0

count = 0

lines = file.read().split()

for i in range(0, len(lines), 3):

belgium += float(lines[i])

usa += float(lines[i + 1])

print("Belgium average:", (belgium / count), "$/gal")

print("USA average:", (usa / count), "$/gal")

Hours question
• Given a file hours.txt with the following contents:

123 Clark 12.5 8.1 7.6 3.2

456 Jordan 4.0 11.6 6.5 2.7 12

789 Faiz 8.0 8.0 8.0 8.0 7.5

• Consider the task of computing hours worked by each person:

Clark (ID#123) worked 31.4 hours (7.85 hours/day)

Jordan (ID#456) worked 36.8 hours (7.36 hours/day)

Faiz (ID#789) worked 39.5 hours (7.90 hours/day)

Line-based file processing

• Instead of using read() use readlines() to read the file

• Then use split() on each line

file = open("<filename>")

lines = file.readlines()

For line in lines:

parts = line.split()

<process the parts of the line>

Hours answer
Processes an employee input file and outputs each employee's hours.

def main():

file = open("hours.txt")

lines = file.readlines()

for line in lines:

process_employee(line)

def process_employee(line):

parts = line.split()

id = parts[0] # e.g. 456

name = parts[1] # e.g. "Greg"

sum = 0

count = 0

for i in range(2, len(parts)):

sum += float(parts[i])

count += 1

average = sum / count

print(name + " (ID#" + id + ") worked " +

str(sum) + " hours (" + str(average) + " hours/day)")

IMDb movies problem

• Consider the following Internet Movie Database (IMDb) data:

1 9.1 196376 The Shawshank Redemption (1994)

2 9.0 139085 The Godfather: Part II (1974)

3 8.8 81507 Casablanca (1942)

• Write a program that displays any movies containing a phrase:

Search word? part

Rank Votes Rating Title
2 139085 9.0 The Godfather: Part II (1974)
40 129172 8.5 The Departed (2006)
95 20401 8.2 The Apartment (1960)
192 30587 8.0 Spartacus (1960)
4 matches.

• Is this a token or line-based problem?

"Chaining"
• main should be a concise summary of your program.

• It is bad if each function calls the next without ever returning (we call this
chaining):

• A better structure has main make most of the calls.
• Functions must return values to main to be passed on later.

main
functionA

functionB
functionC

functionD

main
functionA

functionB
functionD

functionD

Bad IMDb "chained" code 1

Displays IMDB's Top 250 movies that match a search string.

def main():

get_word()

Asks the user for their search word and returns it.

def get_word():

search_word = input("Search word: ")

search_word = search_word.lower()

print()

file = open("imdb.txt")

search(file, search_word)

Breaks apart each line, looking for lines that match the search word.

def search(file, search_word):

matches = 0

for line in file:

line_lower = line.lower() # case-insensitive match

if (search_word in line_lower):

matches += 1

print("Rank\tVotes\tRating\tTitle")

display(line)

Bad IMDb "chained" code 2

Displays the line in the proper format on the screen.

def display(line):

parts = line.split()

rank = parts[0]

rating = parts[1]

votes = parts[2]

title = ""

for i in range(3, len(parts)):

title += parts[i] + " " # the rest of the line

print(rank + "\t" + votes + "\t" + rating + "\t" + title)

Better IMDb answer 1

Displays IMDB's Top 250 movies that match a search string.

def main():

search_word = get_word()

file = open("imdb.txt")

line = search(file, search_word)

if (len(line) > 0):

print("Rank\tVotes\tRating\tTitle")

matches = 0

while (len(line) > 0):

display(line)

line = search(file, search_word)

matches += 1

print(str(matches) + " matches.")

Asks the user for their search word and returns it.

def get_word():

search_word = input("Search word: ")

search_word = search_word.lower()

print()

return search_word

...

Better IMDb answer 2

...

Breaks apart each line, looking for lines that match the search word.

def search(file, search_word):

for line in file:

line_lower = line.lower() # case-insensitive match

if (search_word in line):

return line

return "" # not found

displays the line in the proper format on the screen.

def display(line):

parts = line.split()

rank = parts[0]

rating = parts[1]

votes = parts[2]

title = ""

for i in range(3, len(parts)):

title += parts[i] + " " # the rest of the line

print(rank + "\t" + votes + "\t" + rating + "\t" + title)

