
CSc 110, Spring 2018
Lecture 27: Lists that change size and File Output

Adapted from slides by Marty Stepp and Stuart Reges

Assertion example

Assumes y >= 0, and returns x^y

def pow(x, y):

prod = 1

Point A

while y > 0:

Point B

if y % 2 == 0:

Point C

x = x * x

y = y // 2

Point D

else:

Point E

prod = prod * x

y -= 1

Point F

Point G

return prod

y > 0 y % 2 == 0

Point A

Point B

Point C

Point D

Point E

Point F

Point G

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

y > 0 y % 2 == 0

Point A SOMETIMES SOMETIMES

Point B ALWAYS SOMETIMES

Point C ALWAYS ALWAYS

Point D ALWAYS SOMETIMES

Point E ALWAYS NEVER

Point F SOMETIMES ALWAYS

Point G NEVER ALWAYS

List functions
Function Description

append(x) Add an item to the end of the list. Equivalent to a[len(a):] = [x].

extend(L) Extend the list by appending all the items in the given list. Equivalent
to a[len(a):] = L

insert(i, x) Inserts an item at a given position. i is the index of the element before which to insert,
so a.insert(0, x) inserts at the front of the list.

remove(x) Removes the first item from the list whose value is x. Errs if there is no such item.

pop(i) Removes the item at the given position in the list, and returns it. a.pop() removes and
returns the last item in the list.

clear() Remove all items from the list.

index(x) Returns the index in the list of the first item whose value is x. Errs if there is no such item.

count(x) Returns the number of times x appears in the list.

sort() Sort the items of the list

reverse() Reverses the elements of the list

copy() Return a copy of the list.
3

Lists that change size

• Sometimes we don't know how big we want our list to be when our
program starts
• It can be useful to create an empty list and fill it up.

data = []

data.append("hello")

data.append("world")

print(data) # ['hello', 'world']

• How would we insert another word in the middle?

Exercise

Write a function called remove_duplicates that takes a sorted list
of numbers and removes any duplicates. For example, if it is called on
the following list:

data = [-2, 1, 1, 3, 3, 3, 4, 5, 6, 78, 78, 79]

after the call the list should be

data = [-2, 1, 3, 4, 5, 6, 78, 79]

Looping and removing

• When you loop through a list and remove elements you change the
length of the list. This means you need to change your upper bound
as you are looping.
• You must use a while loop when removing items from a list

• A for i in range loop won't work as it can't adjust when the length of the
list changes

• A for num in data loop won't work as it cannot alter the list.

Solution

def remove_duplicates(data):

i = 0

while i < len(data) - 1:

if data[i] == data[i + 1]:

data.pop(i)

else: # we don't want to move on

i += 1 # to the next element if we

remove as that will me we

will skip the one that

just moved back into the one

we removed's place

Output to files

• Open a file in write or append mode

• 'w' - write mode – replaces everything in the file

• 'a' – append mode – adds to the bottom of the file preserving what is already

in it

name = open("filename", "w") # write

name = open("filename", "a") # append

Output to files

name.write(str) - writes the given string to the file

name.close() - closes file once writing is done

Example:

out = open("output.txt", "w")

out.write("Hello, world!\n")

out.write("How are you?")

out.close()

text = open("output.txt").read() # Hello, world!\nHow are you?

