
CSc 110, Spring 2018
Lecture 27: Lists Tuples

Adapted from slides by Marty Stepp and Stuart Reges

A programming problem

• Given a file of cities' names and (x, y) coordinates:

Winslow 50 20

Tucson 90 60

Phoenix 10 72

Bisbee 74 98

Yuma 5 136

Page 150 91

• Write a program to draw the cities on a DrawingPanel, then simulates an earthquake that turns all
cities red that are within a given radius:

Epicenter x? 100
Epicenter y? 100
Affected radius? 75

A bad solution

lines = open("cities.txt").readlines()

names = [0] * len(lines)

x_coords = [0] * len(lines)

y_coords = [0] * len(lines)

for i in range(0, len(lines)):

parts = lines[i].split()

names[i] = parts[0]

x_coords[i] = parts[1] # read each city

y_coords[i] = parts[2]

...

• parallel lists: 2+ lists with related data at same indexes.
• Considered poor style.

Observations

• The data in this problem is a set of points.

• It would be better stored together

Tuples

• A sequence similar to a list but it cannot be altered

• Good for storing related data
• We mainly store the same type of data in a list

• We usually store related things in tuples

• Creating tuples

name = (data, other_data, … , last_data)

tuple = ("Tucson", 80, 90)

Using tuples

• You can access elements using [] notation, just like lists and strings
tuple = ("Tucson", 80, 90)

low = tuple[1]

• You cannot update a tuple!
• Tuples are immutable

• You can loop through tuples

the same as lists

operation call result

len() len((1, 2, 3)) 3

+ (1, 2, 3) +

(4, 5, 6)

(1, 2, 3, 4, 5, 6)

* ('Hi!',) * 4 ('Hi!', 'Hi!',

'Hi!', 'Hi!')

in 3 in (1, 2, 3) True

for for x in (1,2,3):

print x,

1 2 3

min() min((1, 3)) 1

max() max((1, 3)) 3

Days till

• Write a function called days_till that accepts a start month and
day and a stop month and day and returns the number of days
between them

call return

days_till("december", 1, "december", 10) 9

days_till("novembeR", 15, "december", 10) 25

days_till("OCTober", 6, "december", 17) 72

days_till("october", 6, "ocTober", 1) 360

Days till solution

def days_till(start_month, start_day, stop_month, stop_day):

months = (('january', 31),('february', 28),('march', 31),('april', 30), ('may', 31),('june', 30),

('july', 31), ('august', 31),('september', 30), ('october', 31), ('november', 30), ('december', 31))

if start_month.lower() == stop_month.lower() and stop_day >= start_day:

return stop_day - start_day

days = 0

for i in range(0, len(months)):

month = months[i]

if month[0] == start_month.lower():

days = month[1] - start_day

i += 1

while months[i % 12][0] != stop_month.lower():

days += months[i % 12][1]

i += 1

days += stop_day

return days

Output to files

• Open a file in write or append mode

• 'w' - write mode – replaces everything in the file

• 'a' – append mode – adds to the bottom of the file preserving what is already

in it

name = open("filename", "w") # write

name = open("filename", "a") # append

Output to files

name.write(str) - writes the given string to the file

name.close() - closes file once writing is done

Example:

out = open("output.txt", "w")

out.write("Hello, world!\n")

out.write("How are you?")

out.close()

text = open("output.txt").read() # Hello, world!\nHow are you?

