
CSc 110,
Spring 2018
Lecture 32: Sets and Dictionaries

Adapted from slides by Marty Stepp and Stuart Reges

Exercise

• Write a program that counts the number of unique words in a large
text file (say, Moby Dick or the King James Bible).

• Store the words in a structure and report the # of unique words.

• Once you've created this structure, allow the user to search it to see whether
various words appear in the text file.

• What structure is appropriate for this problem? List? Tuple?

Sets

• set: A collection of unique values (no duplicates allowed)
that can perform the following operations efficiently:
• add, remove, search (contains)

• We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

"to" in set true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

"be" in set false

Creating a Set

• An empty set:
a = set()

• A set with elements in it:
b = {"the", "hello", "happy"}

a.add(val) adds element val to a

a.discard(val) removes val from a if present

a.pop() removes and returns a random element from a

a - b returns a new set containing values in a but not in b

a | b returns a new set containing values in either a or b

a & b returns a new set containing values in both a and b

a ^ b returns a new set containing values in a or b but not both

You can also use in, len(), etc.

Looping over a set?

• You must use a for element in structure loop

• needed because sets have no indexes; can't get element i

Exercise

• Write a program to count the number of occurrences of each unique
word in a large text file (e.g. Moby Dick).

• Allow the user to type a word and report how many times that word
appeared in the book.

• Report all words that appeared in the book at least 500 times.

• What structure is appropriate for this problem?

Dictionaries

• dictionary: Holds a set of unique keys and a collection of values, where
each key is associated with one value.
• a.k.a. "map", "associative array", "hash"

• basic dictionary operations:
• put(key, value): Adds a

mapping from a key to
a value.

• get(key): Retrieves the
value mapped to the key.

• remove(key): Removes
the given key and its
mapped value.

my_dict["Juliet"] returns "Capulet"

Dictionary functions

my_dict[key] = value adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

my_dict[key] returns the value mapped to the given key (error if key not found)

items() return a new view of the dictionary’s items ((key, value) pairs)

pop(key) removes any existing mapping for the given key and returns it
(error if key not found)

popitem() removes and returns an arbitrary (key, value) pair (error if empty)

keys() returns the dictionary's keys

values() returns the dictionary's values

You can also use in, len(), etc.

Maps and tallying

• a map can be thought of as generalization of a tallying list
• the "index" (key) doesn't have to be an int

• count digits: 22092310907

(T)rump, (C)linton, (I)ndependent
• count votes:"TCCCCCCTTTTTCCCCCCTCTTITCTTITCCTIC"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "T" "C" "I"

value 15 15 3

"T"

"C"

"I" 15

3

15

keys values

items, keys and values

• items function returns tuples of each key-value pair
• can loop over the keys in a for loop

ages = {}

ages["Merlin"] = 4

ages("Chester"] = 2

ages["Percival"] = 12

for cat, age in ages.items()):

print(name + " -> " + str(age))

• values function returns all values in the dictionary
• no easy way to get from a value to its associated key(s)

• keys function returns all keys in the dictionary

