
Lecture 37: searching and sorting
Adapted from slides by Marty Stepp and Stuart Reges

CSc 110, Spring 2017

Using binary_search

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a = [-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92]

index1 = binary_search(a, 42)

index2 = binary_search(a, 21)

index3 = binary_search(a, 17, 0, 16)

index2 = binary_search(a, 42, 0, 10)

binary_search returns the index of the number

or

- (index where the value should be inserted + 1)

binary_search

Write the following two functions:

searches an entire sorted list for a given value

returns the index the value should be inserted at to maintain sorted
order

Precondition: list is sorted

binary_search(list, value)

searches given portion of a sorted list for a given value

examines min_index (inclusive) through max_index (exclusive)

returns the index of the value or -(index it should be inserted at + 1)

Precondition: list is sorted

binary_search(list, value, min_index, max_index)

Binary search code

Returns the index of an occurrence of target in a,

or a negative number if the target is not found.

Precondition: elements of a are in sorted order

def binary_search(a, target, start, stop):

min = start

max = stop - 1

while min <= max:

mid = (min + max) // 2

if a[mid] < target:

min = mid + 1

elif a[mid] > target:

max = mid - 1

else:

return mid # target found

return -(min + 1) # target not found

Sorting

• sorting: Rearranging the values in a list into a specific order
(usually into their "natural ordering").

• one of the fundamental problems in computer science
• can be solved in many ways:

• there are many sorting algorithms

• some are faster/slower than others

• some use more/less memory than others

• some work better with specific kinds of data

• some can utilize multiple computers / processors, ...

• comparison-based sorting : determining order by
comparing pairs of elements:
• <, >, …

Bogo sort

• bogo sort: Orders a list of values by repetitively shuffling them
and checking if they are sorted.
• name comes from the word "bogus"

The algorithm:

• Scan the list, seeing if it is sorted. If so, stop.

• Else, shuffle the values in the list and repeat.

• This sorting algorithm (obviously) has terrible performance!

Bogo sort code

Places the elements of a into sorted order.

def bogo_sort(a):

while (not is_sorted(a)):

shuffle(a)

Returns true if a's elements

#are in sorted order.

def is_sorted(a):

for i in range(0, len(a) - 1):

if (a[i] > a[i + 1]):

return False

return True

Swaps a[i] with a[j].

def swap(a, i, j):

if (i != j):

temp = a[i]

a[i] = a[j]

a[j] = temp

Shuffles a list by randomly swapping each

element with an element ahead of it in the list.

def shuffle(a):

for i in range(0, len(a) - 1):

pick a random index in [i+1, a.length-1]

range = len(a) - 1 - (i + 1) + 1

j = (random() * range + (i + 1))

swap(a, i, j)

Selection sort

• selection sort: Orders a list of values by repeatedly putting
the smallest or largest unplaced value into its final position.

The algorithm:

• Look through the list to find the smallest value.

• Swap it so that it is at index 0.

• Look through the list to find the second-smallest value.

• Swap it so that it is at index 1.

...

• Repeat until all values are in their proper places.

Selection sort example
• Initial list:

• After 1st, 2nd, and 3rd passes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 18 12 22 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 12 22 27 30 36 50 7 68 91 56 18 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 22 27 30 36 50 12 68 91 56 18 85 42 98 25

Selection sort code

Rearranges the elements of a into sorted order using

the selection sort algorithm.

def selection_sort(a):

for i in range(0, len(a) - 1):

find index of smallest remaining value

min = i

for j in range(i + 1, len(a)):

if (a[j] < a[min]):

min = j

swap smallest value its proper place, a[i]

swap(a, i, min)

Selection sort runtime (Fig. 13.6)

• How many comparisons does selection sort have to do?

Similar algorithms

bubble sort: Make repeated passes, swapping adjacent values
 slower than selection sort (has to do more swaps)

insertion sort: Shift each element into a sorted sub-list
 faster than selection sort (examines fewer values)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 18 12 -4 22 27 30 36 7 50 68 56 2 85 42 91 25 98

22 50 91 98

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 12 18 22 27 30 36 50 7 68 91 56 2 85 42 98 25

7
sorted sub-list (indexes 0-7)

