
CS 115, Autumn 2020
Lecture 2: Light-Bot

Thank you to Marty Stepp, Stuart Reges and Larry Snyder for parts
of these slides

2

Light-Bot
 What are you doing in Light-Bot?

 Commanding a robot through a “blocks world”

 Programming is commanding an agent

3

Light-Bot and programming
 When you are commanding (programming), you direct an

agent (by instructions) to a goal

 The agent is usually a computer, but it can be a person, or
other device (animated robot)

 The agent follows the commands (instructions), flawlessly,
and mindlessly, doing only what it is asked

 The program implements human intent – you are trying to
get the robot to the Blue Tile goal – it’s the point of your
instructions

4

Sequencing
 Instructions are given in

sequence (order
matters)

 They are followed in
sequence

 programming : you
giving instructions

 executing or running :
the agent following the
instructions

 program counter :
marks the agent’s place

5

Order of Events
 The instructions are programmed ahead of time

 They are executed later, without programmer’s intervention

 Each instruction makes progress towards the goal

 The instructions must be right and sufficient to achieve the
goal

6

Point of View
 Programming requires you to take the agent’s point of view

7

Limited Instructions
 The number and type of instructions is always limited – you

need a solution using only them

 Instructions

 The agent can do only certain things

 There is no JUMP_3

 Executes the instructions one-at-a-time

8

Limited Instructions
 In theory, a computer with just 6 instruction types could

compute all known computations

 Programming with 6 instructions would be tedious

 No one would be a programmer no matter how much it paid

 Apps as we know them would not exist

 Programming was like this in the beginning

 This is why they are called the “bad old days”

 Functions fix this!

9

Functions
 We make new instructions using functions!

 F1() packages actions: E.G. “process a riser”

10

Where do functions come from?
 The “process a riser” function was a sub-problem of the

overall task – we just saw it was a useful operation to
perform

 Spotting common patterns is also another place to find
“work” that could be turned into functions

11

Move to next riser

12

Move to next riser

13

Functions
 Functions allow us to solve problems by solving parts,

naming them (at least in our mind), and putting the part
solutions together to solve the whole problem

14

Abstraction

No. 5 / No. 22

Mark Rothko

15

Abstraction
 Abstraction is the act of recognizing and then removing an

idea or concept or process from a situation.

 Example:

 Saying: “A fox saw some juicy grapes growing on a fence. He
tried and tried to reach them, but failed. Finally, he walked
away, saying ‘They were probably sour’”

• Meaning: one failing to get something they want, often claims
in the end it’s no good.

 Separate relevant from irrelevant

 Recast the idea in more general terms

16

Function becomes a concept
 Because we noticed “process a riser,” as an action we

needed to do (more than once) we think of the
programming task as

17

Noticing conceptual units
 We can “see” abstractions in the problem (riser picture) or

in the solution (instruction pattern) … where we find them
doesn’t matter

18

Elegance

19

Abstraction
 Collecting operations together and giving them a name is

functional abstraction

 The operations perform a coherent activity or action – they
become a concept in our thinking

 The operations accomplish a goal that is useful – and typically
– is needed over and over again

 Functions implement functional abstraction: 3 parts

 A name

 A definition (instruction sequence), frequently called a “body”

 Parameters –stuff inside the parentheses, covered later

20

Abstraction is common
 Functional abstractions in which you are the agent, but

someone taught you:

 Parallel parking

 Backstroke in swimming

 Functional abstractions you recognized and in which you
are the agent

 Doing a load of laundry

 Making your favorite {sandwich, pizza, cookies, …}

 Others?

21

No one right abstraction
 We have abstracted “process a riser” and “move to the next

riser” as components of a solution

 As concepts, they are packaged into functions

 Maybe you thought of this in a different way

 That is, there can be other “coherent” parts of a solution

22

How will abstraction help?

