
CS 115, Autumn 2020
Lecture 2: Light-Bot

Thank you to Marty Stepp, Stuart Reges and Larry Snyder for parts 
of these slides



2

Light-Bot
 What are you doing in Light-Bot?

 Commanding a robot through a “blocks world”

 Programming is commanding an agent 



3

Light-Bot and programming
 When you are commanding (programming), you direct an 

agent (by instructions) to a goal 

 The agent is usually a computer, but it can be a person, or 
other device (animated robot)

 The agent follows the commands (instructions), flawlessly, 
and mindlessly, doing only what it is asked 

 The program implements human intent – you are trying to 
get the robot to the Blue Tile goal – it’s the point of your 
instructions 



4

Sequencing
 Instructions are given in 

sequence (order 
matters)

 They are followed in                                          
sequence

 programming : you 
giving instructions

 executing or running : 
the agent following the 
instructions

 program counter : 
marks the agent’s place



5

Order of Events
 The instructions are programmed ahead of time

 They are executed later, without programmer’s intervention 

 Each instruction makes progress towards the goal 

 The instructions must be right and sufficient to achieve the 
goal



6

Point of View
 Programming requires you to take the agent’s point of view



7

Limited Instructions
 The number and type of instructions is always limited – you 

need a solution using only them 

 Instructions 

 The agent can do only certain things 

 There is no JUMP_3 

 Executes the instructions one-at-a-time 



8

Limited Instructions
 In theory, a computer with just 6 instruction types could 

compute all known computations

 Programming with 6 instructions would be tedious

 No one would be a programmer no matter how much it paid 

 Apps as we know them would not exist 

 Programming was like this in the beginning

 This is why they are called the “bad old days” 

 Functions fix this!



9

Functions
 We make new instructions using functions!

 F1( ) packages actions: E.G. “process a riser”



10

Where do functions come from?
 The “process a riser” function was a sub-problem of the 

overall task – we just saw it was a useful operation to 
perform

 Spotting common patterns is also another place to find 
“work” that could be turned into functions



11

Move to next riser



12

Move to next riser



13

Functions
 Functions allow us to solve problems by solving parts, 

naming them (at least in our mind), and putting the part 
solutions together to solve the whole problem 



14

Abstraction

No. 5 / No. 22

Mark Rothko



15

Abstraction
 Abstraction is the act of recognizing and then removing an 

idea or concept or process from a situation. 

 Example:

 Saying: “A fox saw some juicy grapes growing on a fence. He 
tried and tried to reach them, but failed. Finally, he walked 
away, saying ‘They were probably sour’”

• Meaning: one failing to get something they want, often claims 
in the end it’s no good. 

 Separate relevant from irrelevant 

 Recast the idea in more general terms 



16

Function becomes a concept
 Because we noticed “process a riser,” as an action we 

needed to do (more than once) we think of the 
programming task as 



17

Noticing conceptual units
 We can “see” abstractions in the problem (riser picture) or 

in the solution (instruction pattern) … where we find them 
doesn’t matter 



18

Elegance



19

Abstraction
 Collecting operations together and giving them a name is 

functional abstraction 

 The operations perform a coherent activity or action – they 
become a concept in our thinking 

 The operations accomplish a goal that is useful – and typically 
– is needed over and over again 

 Functions implement functional abstraction: 3 parts

 A name

 A definition (instruction sequence), frequently called a “body”

 Parameters –stuff inside the parentheses, covered later



20

Abstraction is common
 Functional abstractions in which you are the agent, but 

someone taught you: 

 Parallel parking 

 Backstroke in swimming 

 Functional abstractions you recognized and in which you 
are the agent 

 Doing a load of laundry 

 Making your favorite {sandwich, pizza, cookies, …} 

 Others?



21

No one right abstraction
 We have abstracted “process a riser” and “move to the next 

riser” as components of a solution 

 As concepts, they are packaged into functions 

 Maybe you thought of this in a different way 

 That is, there can be other “coherent” parts of a solution 



22

How will abstraction help?


