
Copyright 2010 by Pearson Education

CS& 141, Winter 2021
Lecture 1: Introduction; Basic Java Programs

Copyright 2010 by Pearson Education
2

Important Information

 Course website:

 http://allisonobourn.com/edmonds/131

 Instructor email:

 allison.obourn@edcc.edu

http://allisonobourn.com/edmonds/131

Copyright 2010 by Pearson Education
3

Computer Science
 CS is about PROCESS – describing how to accomplish tasks

 "efficiently implementing automated abstractions" (Philip Guo)

 Computers are a tool

 Currently the best implementation platform

 What kinds of problems can they solve?

 How can they be made faster, cheaper, more efficient…?

 Science?

 More like engineering, art, magic…

 Hypothesis creation, testing, refinement important

 CS is still a young field finding itself

http://www.stanford.edu/~pgbovine/what-is-computer-science.htm

Copyright 2010 by Pearson Education
5

Programming
 program: A set of instructions

to be carried out by a computer.

 program execution: The act of
carrying out the instructions
contained in a program.

 programming language: A systematic set of rules used
to describe computations in a format that is editable by
humans.

Copyright 2010 by Pearson Education
6

Some modern languages
 procedural languages: programs are a series of commands

 Pascal (1970): designed for education

 C (1972): low-level operating systems and device drivers

 functional programming: functions map inputs to outputs

 Lisp (1958) / Scheme (1975), ML (1973), Haskell (1990)

 object-oriented languages: programs use interacting "objects"

 Smalltalk (1980): first major object-oriented language

 C++ (1985): "object-oriented" improvements to C

 successful in industry; used to build major OSes such as Windows

 Java (1995): designed for embedded systems, web apps/servers

 Runs on many platforms (Windows, Mac, Linux, cell phones...)

 The language taught in this textbook

Copyright 2010 by Pearson Education
7

Why Java?
 Relatively simple

 Object-oriented

 Pre-written software

 Platform independent (Mac, Windows…)

 Widely used

 #1 in popularity ie
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.
html

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Copyright 2010 by Pearson Education
8

Compiling/running a program

1. Write it.

 code or source code: The set of instructions in a program.

2. Compile it.

• compile: Translate a program from one language to another.

 byte code: The Java compiler converts your code into a
format named byte code that runs on many computer types.

3. Run (execute) it.

 output: The messages printed to the user by a program.

source code

compile

byte code

run

output

Copyright 2010 by Pearson Education
9

A Java program
public class Hello {

public static void main(String[] args) {

System.out.println("Hello, world!");

System.out.println();

System.out.println("This program produces");

System.out.println("four lines of output");

}

}

 Its output:

Hello, world!

This program produces

four lines of output

 console: Text box into which
the program's output is printed.

Copyright 2010 by Pearson Education
10

Structure of a Java program
public class name {

public static void main(String[] args) {

statement;

statement;

...

statement;

}

}

 Every executable Java program consists of a class,

 that contains a method named main,

 that contains the statements (commands) to be executed.

class: a program

statement: a command to be executed

method: a named group
of statements

Copyright 2010 by Pearson Education
11

Names and identifiers
 You must give your program a name.

public class Song {

 Naming convention: capitalize each word (e.g. MyClassName)

 Your program's file must match exactly (Song.java)

 includes capitalization (Java is "case-sensitive")

 identifier: A name given to an item in your program.

 must start with a letter or _ or $

 subsequent characters can be any of those or a number

 legal: _myName TheCure ANSWER_IS_42 $bling$

 illegal: me+u 49ers side-swipe Ph.D's

Copyright 2010 by Pearson Education
12

Keywords
 keyword: An identifier that you cannot use because it

already has a reserved meaning in Java.

abstract default if private this

boolean do implements protected throw

break double import public throws

byte else instanceof return transient

case extends int short try

catch final interface static void

char finally long strictfp volatile

class float native super while

const for new switch

continue goto package synchronized

Copyright 2010 by Pearson Education
13

Syntax
 syntax: The set of legal structures and commands that can

be used in a particular language.

 Every basic Java statement ends with a semicolon ;

 The contents of a class or method occur between { and }

 syntax error (compiler error): A problem in the
structure of a program that causes the compiler to fail.

 Missing semicolon

 Too many or too few { } braces

 Illegal identifier for class name

 Class and file names do not match

...

Copyright 2010 by Pearson Education
14

Syntax error example
1 public class Hello {

2 pooblic static void main(String[] args) {

3 System.owt.println("Hello, world!")_

4 }

5 }

 Compiler output:

Hello.java:2: <identifier> expected
pooblic static void main(String[] args) {

^
Hello.java:3: ';' expected
}
^
2 errors

 The compiler shows the line number where it found the error.

 The error messages can be tough to understand!

Copyright 2010 by Pearson Education
15

System.out.println

 A statement that prints a line of output on the console.

 pronounced "print-linn” (NOT ‘print-L-N’)

 sometimes called a "println statement" for short

 Two ways to use System.out.println :

• System.out.println("text");

Prints the given message as output.

• System.out.println();

Prints a blank line of output.

Copyright 2010 by Pearson Education
16

Strings and escape
sequences

Copyright 2010 by Pearson Education
17

Strings

 string: A sequence of characters to be printed.

 Starts and ends with a " quote " character.

 The quotes do not appear in the output.

 Examples:

"hello"

"This is a string. It's very long!"

 Restrictions:

 May not span multiple lines.

"This is not

a legal String."

 May not contain a " character.
"This is not a "legal" String either."

Copyright 2010 by Pearson Education
18

Escape sequences

 escape sequence: A special sequence of characters used
to represent certain special characters in a string.

\t tab character

\n new line character

\" quotation mark character

\\ backslash character

 Example:
System.out.println("\\hello\nhow\tare \"you\"?\\\\");

 Output:
\hello

how are "you"?\\

Copyright 2010 by Pearson Education
19

Questions

 What is the output of the following println statements?

System.out.println("\ta\tb\tc");

System.out.println("\\\\");

System.out.println("'");

System.out.println("\"\"\"");

System.out.println("C:\nin\the downward spiral");

 Write a println statement to produce this output:

/ \ // \\ /// \\\

Copyright 2010 by Pearson Education
20

Answers

 Output of each println statement:

a b c

\\

'

"""

C:

in he downward spiral

 println statement to produce the line of output:

System.out.println("/ \\ // \\\\ /// \\\\\\");

Copyright 2010 by Pearson Education
21

Questions

 What println statements will generate this output?

This quote is from

Irish poet Oscar Wilde:

"Music makes one feel so romantic

- at least it always gets on one's nerves –

which is the same thing nowadays."

 What println statements will generate this output?

A "quoted" String is

'much' better if you learn

the rules of "escape sequences."

Also, "" represents an empty String.

Don't forget: use \" instead of " !

'' is not the same as "

Copyright 2010 by Pearson Education
22

Answers

 println statements to generate the output:
System.out.println("This quote is from");

System.out.println("Irish poet Oscar Wilde:”);
System.out.println();

System.out.println("\"Music makes one feel so romantic");

System.out.println("- at least it always gets on one's nerves -");

System.out.println("which is the same thing nowadays.\"");

 println statements to generate the output:

System.out.println("A \"quoted\" String is");

System.out.println("'much' better if you learn");

System.out.println("the rules of \"escape sequences.\"");

System.out.println();

System.out.println("Also, \"\" represents an empty String.");

System.out.println("Don't forget: use \\\" instead of \" !");

System.out.println("'' is not the same as \"");

Copyright 2010 by Pearson Education

Comments

Copyright 2010 by Pearson Education
24

Comments
 comment: A note written in source code by the

programmer to describe or clarify the code.

 Comments are not executed when your program runs.

 Syntax:

// comment text, on one line

or,
/* comment text; may span multiple lines */

 Examples:
// This is a one-line comment.

/* This is a very long

multi-line comment. */

Copyright 2010 by Pearson Education
25

Comments example
/* Suzy Student, CSE 142, Fall 2019

Displays lyrics*/

public class Lyrics {

public static void main(String[] args) {

// first line

System.out.println("When I first got into magic");

System.out.println("it was an underground phenomenon");

System.out.println();

// second line

System.out.println("Now everybody's like");

System.out.println("pick a card, any card");

}

}

Copyright 2010 by Pearson Education

Static methods

Copyright 2010 by Pearson Education
27

Algorithms
 algorithm: A list of steps for solving a problem.

 Example algorithm: "Bake sugar cookies"

 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

 Set the oven temperature.

 Set the timer for 10 minutes.

 Place the cookies into the oven.

 Allow the cookies to bake.

 Spread frosting and sprinkles onto the cookies.

 ...

Copyright 2010 by Pearson Education
28

Problems with algorithms
 lack of structure: Many steps; tough to follow.

 redundancy: Consider making a double batch...
 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

 Set the oven temperature.

 Set the timer for 10 minutes.

 Place the first batch of cookies into the oven.

 Allow the cookies to bake.

 Set the timer for 10 minutes.

 Place the second batch of cookies into the oven.

 Allow the cookies to bake.

 Mix ingredients for frosting.

 ...

Copyright 2010 by Pearson Education
29

Structured algorithms
 structured algorithm: Split into coherent tasks.

1 Make the batter.

 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

2 Bake the cookies.

 Set the oven temperature.

 Set the timer for 10 minutes.

 Place the cookies into the oven.

 Allow the cookies to bake.

3 Decorate the cookies.

 Mix the ingredients for the frosting.

 Spread frosting and sprinkles onto the cookies.

...

Copyright 2010 by Pearson Education
30

Removing redundancy
 A well-structured algorithm can describe repeated tasks

with less redundancy.

1 Make the cookie batter.

 Mix the dry ingredients.

 ...

2a Bake the cookies (first batch).

 Set the oven temperature.

 Set the timer for 10 minutes.

 ...

2b Bake the cookies (second batch).

 Repeat Step 2a

3 Decorate the cookies.

 ...

Copyright 2010 by Pearson Education
31

Static methods
 static method: A named group of statements.

 denotes the structure of a program

 eliminates redundancy by code reuse

 procedural decomposition:

dividing a problem into methods

 Writing a static method is like

adding a new command to Java.

class

method A

◼ statement

◼ statement

◼ statement

method B

◼ statement

◼ statement

method C

◼ statement

◼ statement

◼ statement

Copyright 2010 by Pearson Education
32

Gives your method a name so it can be executed

 Syntax:

public static void name() {
statement;
statement;
...
statement;

}

 Example:

public static void printWarning() {

System.out.println("This product causes cancer");

System.out.println("in lab rats and humans.");

}

Declaring a method

Copyright 2010 by Pearson Education
33

Calling a method
Executes the method's code

 Syntax:

name();

 You can call the same method many times if you like.

 Example:

printWarning();

 Output:

This product causes cancer

in lab rats and humans.

Copyright 2010 by Pearson Education
34

Using static methods

1. Design (think about) the algorithm.

 Look at the structure, and which commands are repeated.

 Decide what are the important overall tasks.

2. Declare (write down) the methods.

 Arrange statements into groups and give each group a name.

3. Call (run) the methods.

 The program's main method executes the other methods to

perform the overall task.

Copyright 2010 by Pearson Education
35

Program with static method
public class FreshPrince {

public static void main(String[] args) {

rap(); // Calling (running) the rap method

System.out.println();

rap(); // Calling the rap method again

}

// This method prints the lyrics to my favorite song.

public static void rap() {

System.out.println("Now this is the story all about how");

System.out.println("My life got flipped turned upside-down");

}

}

Output:

Now this is the story all about how

My life got flipped turned upside-down

Now this is the story all about how

My life got flipped turned upside-down

Copyright 2010 by Pearson Education
36

Methods calling methods
public class MethodsExample {

public static void main(String[] args) {

message1();

message2();
System.out.println("Done with main.");

}

public static void message1() {

System.out.println("This is message1.");

}

public static void message2() {

System.out.println("This is message2.");

message1();
System.out.println("Done with message2.");

}

}

 Output:
This is message1.

This is message2.

This is message1.

Done with message2.

Done with main.

Copyright 2010 by Pearson Education
37

 When a method is called, the program's execution...

 "jumps" into that method, executing its statements, then

 "jumps" back to the point where the method was called.

public class MethodsExample {

public static void main(String[] args) {

message1();

message2();

System.out.println("Done with main.");

}

...

}

public static void message1() {

System.out.println("This is message1.");

}

public static void message2() {

System.out.println("This is message2.");

message1();

System.out.println("Done with message2.");

}

public static void message1() {

System.out.println("This is message1.");

}

Control flow

Copyright 2010 by Pearson Education
38

When to use methods
 Place statements into a static method if:

 The statements are related structurally, and/or

 The statements are repeated.

 You should not create static methods for:

 An individual println statement.

 Only blank lines. (Put blank printlns in main.)

 Unrelated or weakly related statements.

(Consider splitting them into two smaller methods.)

Copyright 2010 by Pearson Education

Drawing complex figures
with static methods

Copyright 2010 by Pearson Education
40

Static methods question
 Write a program to print these figures using methods.

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Copyright 2010 by Pearson Education
41

Development strategy

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

First version (unstructured):

◼ Create an empty program and main method.

◼ Copy the expected output into it, surrounding
each line with System.out.println syntax.

◼ Run it to verify the output.

Copyright 2010 by Pearson Education
42

Program version 1
public class Figures1 {

public static void main(String[] args) {

System.out.println(" ______");

System.out.println(" / \\");

System.out.println("/ \\");

System.out.println("\\ /");

System.out.println(" ______/");

System.out.println();

System.out.println("\\ /");

System.out.println(" ______/");

System.out.println("+--------+");

System.out.println();

System.out.println(" ______");

System.out.println(" / \\");

System.out.println("/ \\");

System.out.println("| STOP |");

System.out.println("\\ /");

System.out.println(" ______/");

System.out.println();

System.out.println(" ______");

System.out.println(" / \\");

System.out.println("/ \\");

System.out.println("+--------+");

}

}

Copyright 2010 by Pearson Education
43

Development strategy 2

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Second version (structured, with redundancy):

◼ Identify the structure of the output.

◼ Divide the main method into static methods

based on this structure.

Copyright 2010 by Pearson Education
44

Output structure

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

The structure of the output:

◼ initial "egg" figure

◼ second "teacup" figure

◼ third "stop sign" figure

◼ fourth "hat" figure

This structure can be represented by methods:

◼ egg

◼ teaCup

◼ stopSign

◼ hat

Copyright 2010 by Pearson Education
45

Program version 2
public class Figures2 {

public static void main(String[] args) {
egg();
teaCup();
stopSign();
hat();

}

public static void egg() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

public static void teaCup() {
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();

}
...

Copyright 2010 by Pearson Education
46

Program version 2, cont'd.
...

public static void stopSign() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

public static void hat() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

Copyright 2010 by Pearson Education
47

Development strategy 3

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Third version (structured, without redundancy):

◼ Identify redundancy in the output, and create
methods to eliminate as much as possible.

◼ Add comments to the program.

Copyright 2010 by Pearson Education
48

Output redundancy

The redundancy in the output:

◼ egg top: reused on stop sign, hat

◼ egg bottom: reused on teacup, stop sign

◼ divider line: used on teacup, hat

This redundancy can be fixed by methods:

◼ eggTop

◼ eggBottom

◼ line

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Copyright 2010 by Pearson Education
49

Program version 3
// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {

public static void main(String[] args) {
egg();
teaCup();
stopSign();
hat();

}

// Draws the top half of an an egg figure.
public static void eggTop() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");

}

// Draws the bottom half of an egg figure.
public static void eggBottom() {

System.out.println("\\ /");
System.out.println(" ______/");

}

// Draws a complete egg figure.
public static void egg() {

eggTop();
eggBottom();
System.out.println();

}

...

Copyright 2010 by Pearson Education
50

Program version 3, cont'd.
...

// Draws a teacup figure.
public static void teaCup() {

eggBottom();
line();
System.out.println();

}

// Draws a stop sign figure.
public static void stopSign() {

eggTop();
System.out.println("| STOP |");
eggBottom();
System.out.println();

}

// Draws a figure that looks sort of like a hat.
public static void hat() {

eggTop();
line();

}

// Draws a line of dashes.
public static void line() {

System.out.println("+--------+");
}

}

