
Copyright 2010 by Pearson Education
1

CS& 141, Winter 2021
Lecture 2: Graphics; Expressions and Variables

Copyright 2010 by Pearson Education
2

Data and expressions

Copyright 2010 by Pearson Education
3

Data types
 Internally, computers store everything as 1s and 0s

104 → 01101000

"hi" → 0110100001101001

h → 01101000

 How are h and 104 differentiated?

 type: A category or set of data values.

 Constrains the operations that can be performed on data

 Many languages ask the programmer to specify types

 Examples: integer, real number, string

Copyright 2010 by Pearson Education
4

Java's primitive types

 primitive types: 8 simple types for numbers, text, etc.

 Java also has object types, which we'll talk about later

Name Description Examples

 int integers (up to 231 - 1) 42, -3, 0, 926394

 double real numbers (up to 10308) 3.1, -0.25, 9.4e3

 char single text characters 'a', 'X', '?', '\n'

 boolean logical values true, false

• Why does Java distinguish integers vs. real numbers?

Copyright 2010 by Pearson Education
6

Expressions
 expression: A value or operation that computes a value.

• Examples: 1 + 4 * 5

(7 + 2) * 6 / 3

42

 The simplest expression is a literal value.

 A complex expression can use operators and parentheses.

Copyright 2010 by Pearson Education
7

Arithmetic operators
 operator: Combines multiple values or expressions.

 + addition

 - subtraction (or negation)

 * multiplication

 / division

 % modulus (a.k.a. remainder)

 As a program runs, its expressions are evaluated.

 1 + 1 evaluates to 2

 System.out.println(3 * 4); prints 12

 How would we print the text 3 * 4 ?

Copyright 2010 by Pearson Education
8

Integer division with /

 When we divide integers, the quotient is also an integer.

 14 / 4 is 3, not 3.5

3 4 52

4) 14 10) 45 27) 1425

12 40 135

2 5 75

54

21

 More examples:

 32 / 5 is 6

 84 / 10 is 8

 156 / 100 is 1

 Dividing by 0 causes an error when your program runs.

Copyright 2010 by Pearson Education
9

Integer remainder with %
 The % operator computes the remainder from integer division.

 14 % 4 is 2

 218 % 5 is 3

3 43

4) 14 5) 218

12 20

2 18

15

3

 Applications of % operator:

 Obtain last digit of a number: 230857 % 10 is 7

 Obtain last 4 digits: 658236489 % 10000 is 6489

 See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

What is the result?

45 % 6

2 % 2

8 % 20

11 % 0

Copyright 2010 by Pearson Education
10

Precedence
 precedence: Order in which operators are evaluated.

 Generally operators evaluate left-to-right.

1 - 2 - 3 is (1 - 2) - 3 which is -4

 But * / % have a higher level of precedence than + -

1 + 3 * 4 is 13

6 + 8 / 2 * 3

6 + 4 * 3

6 + 12 is 18

 Parentheses can force a certain order of evaluation:

(1 + 3) * 4 is 16

 Spacing does not affect order of evaluation

1+3 * 4-2 is 11

Copyright 2010 by Pearson Education
11

Precedence examples

 1 * 2 + 3 * 5 % 4

 _/
|
2 + 3 * 5 % 4

 _/
|

2 + 15 % 4

 ___/
|

2 + 3

 ________/
|
5

◼ 1 + 8 % 3 * 2 - 9

◼ _/
|

1 + 2 * 2 - 9

◼ ___/
|

1 + 4 - 9

◼ ______/
|
5 - 9

◼ _________/
|
-4

Copyright 2010 by Pearson Education
13

Real numbers (type double)

 Examples: 6.022 , -42.0 , 2.143e17

 Placing .0 or . after an integer makes it a double.

 The operators + - * / % () all still work with double.

 / produces an exact answer: 15.0 / 2.0 is 7.5

 Precedence is the same: () before * / % before + -

Copyright 2010 by Pearson Education
14

Real number example
 2.0 * 2.4 + 2.25 * 4.0 / 2.0

 ___/

|

4.8 + 2.25 * 4.0 / 2.0

 ___/

|

4.8 + 9.0 / 2.0

 _____/

|

4.8 + 4.5

 ____________/

|

9.3

Copyright 2010 by Pearson Education
15

Mixing types
 When int and double are mixed, the result is a double.

 4.2 * 3 is 12.6

 The conversion is per-operator, affecting only its operands.

 7 / 3 * 1.2 + 3 / 2

 _/
|
2 * 1.2 + 3 / 2

 ___/
|
2.4 + 3 / 2

 _/
|

2.4 + 1

 ________/
|
3.4

 3 / 2 is 1 above, not 1.5.

 2.0 + 10 / 3 * 2.5 - 6 / 4

 ___/
|

2.0 + 3 * 2.5 - 6 / 4

 _____/
|

2.0 + 7.5 - 6 / 4

 _/
|

2.0 + 7.5 - 1

 _________/
|
9.5 - 1

 ______________/
|
8.5

Copyright 2010 by Pearson Education
16

String concatenation
 string concatenation: Using + between a string and

another value to make a longer string.

"hello" + 42 is "hello42"
1 + "abc" + 2 is "1abc2"
"abc" + 1 + 2 is "abc12"
1 + 2 + "abc" is "3abc"
"abc" + 9 * 3 is "abc27"
"1" + 1 is "11"
4 - 1 + "abc" is "3abc"

 Use + to print a string and an expression's value together.

 System.out.println("Grade: " + (95.1 + 71.9) / 2);

• Output: Grade: 83.5

Copyright 2010 by Pearson Education
17

Variables

Copyright 2010 by Pearson Education
18

Receipt example
What's bad about the following code?

public class Receipt {

public static void main(String[] args) {

// Calculate total owed, assuming 8% tax / 15% tip

System.out.println("Subtotal:");

System.out.println(38 + 40 + 30);

System.out.println("Tax:");

System.out.println((38 + 40 + 30) * .08);

System.out.println("Tip:");

System.out.println((38 + 40 + 30) * .15);

System.out.println("Total:");

System.out.println(38 + 40 + 30 +

(38 + 40 + 30) * .08 +

(38 + 40 + 30) * .15);

}

}

 The subtotal expression (38 + 40 + 30) is repeated

 So many println statements

Copyright 2010 by Pearson Education
19

Variables
 variable: A piece of the computer's memory that is given a

name and type, and can store a value.

 Like preset stations on a car stereo, or cell phone speed dial:

 Steps for using a variable:

 Declare it - state its name and type

 Initialize it - store a value into it

 Use it - print it or use it as part of an expression

Copyright 2010 by Pearson Education
20

Declaration
 variable declaration: Sets aside memory for storing a value.

 Variables must be declared before they can be used.

 Syntax:

type name;

 The name is an identifier.

 int zipcode;

 double myGPA;

zipcode

myGPA

Copyright 2010 by Pearson Education
21

Assignment
 assignment: Stores a value into a variable.

 The value can be an expression; the variable stores its result.

 Syntax:

name = expression;

 int zipcode;

zipcode = 90210;

 double myGPA;

myGPA = 1.0 + 2.25;

zipcode 90210

myGPA 3.25

Copyright 2010 by Pearson Education
22

Using variables
 Once given a value, a variable can be used in expressions:

int x;

x = 3;

System.out.println("x is " + x); // x is 3

System.out.println(5 * x - 1); // 5 * 3 - 1

 You can assign a value more than once:

int x;

x = 3;

System.out.println(x + " here"); // 3 here

x = 4 + 7;

System.out.println("now x is " + x); // now x is 11

x 3x 11

Copyright 2010 by Pearson Education
23

Declaration/initialization
 A variable can be declared/initialized in one statement.

 Syntax:

type name = value;

 double myGPA = 3.95;

 int x = (11 % 3) + 12;
x 14

myGPA 3.95

Copyright 2010 by Pearson Education
24

Assignment and algebra
 Assignment uses = , but it is not an algebraic equation.

 = means, "store the value at right in variable at left"

 The right side expression is evaluated first,

and then its result is stored in the variable at left.

 What happens here?

int x = 3;

x = x + 2; // ??? x 3x 5

Copyright 2010 by Pearson Education
25

Assignment and types
 A variable can only store a value of its own type.

 int x = 2.5; // ERROR: incompatible types

 An int value can be stored in a double variable.

 The value is converted into the equivalent real number.

 double myGPA = 4;

 double avg = 11 / 2;

 Why does avg store 5.0
and not 5.5 ?

myGPA 4.0

avg 5.0

Copyright 2010 by Pearson Education
26

Compiler errors
 A variable can't be used until it is assigned a value.

 int x;

System.out.println(x); // ERROR: x has no value

 You may not declare the same variable twice.

 int x;

int x; // ERROR: x already exists

 int x = 3;

int x = 5; // ERROR: x already exists

 How can this code be fixed?

Copyright 2010 by Pearson Education
27

Printing a variable's value
 Use + to print a string and a variable's value on one line.

 double grade = (95.1 + 71.9 + 82.6) / 3.0;

System.out.println("Your grade was " + grade);

int students = 11 + 17 + 4 + 19 + 14;

System.out.println("There are " + students +

" students in the course.");

• Output:

Your grade was 83.2

There are 65 students in the course.

Copyright 2010 by Pearson Education
28

Receipt question
Improve the receipt program using variables.

public class Receipt {

public static void main(String[] args) {

// Calculate total owed, assuming 8% tax / 15% tip

System.out.println("Subtotal:");

System.out.println(38 + 40 + 30);

System.out.println("Tax:");

System.out.println((38 + 40 + 30) * .08);

System.out.println("Tip:");

System.out.println((38 + 40 + 30) * .15);

System.out.println("Total:");

System.out.println(38 + 40 + 30 +

(38 + 40 + 30) * .15 +

(38 + 40 + 30) * .08);

}

}

Copyright 2010 by Pearson Education
29

Receipt answer
public class Receipt {

public static void main(String[] args) {

// Calculate total owed, assuming 8% tax / 15% tip

int subtotal = 38 + 40 + 30;

double tax = subtotal * .08;

double tip = subtotal * .15;

double total = subtotal + tax + tip;

System.out.println("Subtotal: " + subtotal);

System.out.println("Tax: " + tax);

System.out.println("Tip: " + tip);

System.out.println("Total: " + total);

}

}

Copyright 2010 by Pearson Education

Graphics

Copyright 2010 by Pearson Education
31

Graphical objects
We will draw graphics in Java using 3 kinds of objects:

 DrawingPanel: A window on the screen.

 Not part of Java; provided by the instructor.
See class web site.

 Graphics: A "pen" to draw shapes

and lines on a window.

 Color: Colors in which to draw shapes.

Copyright 2010 by Pearson Education
32

DrawingPanel
 To create a window:

DrawingPanel <name> = new DrawingPanel(<width>, <height>);

Example:

DrawingPanel panel = new DrawingPanel(300, 200);

 The window has nothing on it.

 We can draw shapes and
lines on it using another object
of type Graphics.

Copyright 2010 by Pearson Education
33

Graphics
 Shapes are drawn using an object of class Graphics.

 You must place an import declaration in your program:
import java.awt.*;

 Access it by calling getGraphics on your DrawingPanel.

Graphics g = panel.getGraphics();

 Draw shapes by calling methods
on the Graphics object.

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);

Copyright 2010 by Pearson Education
34

Graphics methods

Method name Description

g.drawLine(x1, y1, x2, y2); line between points (x1, y1), (x2, y2)

g.drawOval(x, y, width, height); outline largest oval that fits in a box of
size width * height with top-left at (x, y)

g.drawRect(x, y, width, height); outline of rectangle of size width *
height with top-left at (x, y)

g.drawString(text, x, y); text with bottom-left at (x, y)

g.fillOval(x, y, width, height); fill largest oval that fits in a box of size
width * height with top-left at (x,y)

g.fillRect(x, y, width, height); fill rectangle of size width * height
with top-left at (x, y)

g.setColor(Color); set Graphics to paint any following

shapes in the given color

Copyright 2010 by Pearson Education
35

Coordinate system
 Each (x, y) position is a pixel ("picture element").

 (0, 0) is at the window's top-left corner.

 x increases rightward and the y increases downward.

 The rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

(200, 100)

y+

Copyright 2010 by Pearson Education
36

Colors
 Colors are specified by Color class constants named:
BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY,
MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW

 Pass to Graphics object's setColor method:

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);

g.fillOval(60, 40, 40, 70);

 The background color can be set by calling setBackground
on the DrawingPanel:

panel.setBackground(Color.YELLOW);

Copyright 2010 by Pearson Education
37

Outlined shapes
 To draw a shape with a fill and outline, first fill it in the fill

color and then draw the same shape in the outline color.

import java.awt.*; // so I can use Graphics

public class DrawOutline {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(150, 70);

Graphics g = panel.getGraphics();

// inner red fill

g.setColor(Color.RED);

g.fillRect(20, 10, 100, 50);

// black outline

g.setColor(Color.BLACK);

g.drawRect(20, 10, 100, 50);

}

}

Copyright 2010 by Pearson Education
38

Superimposing shapes
 When two shapes occupy the same pixels, the last one

drawn is seen.

import java.awt.*;

public class DrawCar {

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);

panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);

g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);

g.fillOval(20, 70, 20, 20);

g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);

g.fillRect(80, 40, 30, 20);

}

}

Copyright 2010 by Pearson Education
39

Repetition with for loops
 So far, repeating an action results in redundant code:

makeBatter();

bakeCookies();

bakeCookies();

bakeCookies();

bakeCookies();

bakeCookies();

frostCookies();

 Java's for loop statement performs a task many times.

mixBatter();

for (int i = 1; i <= 5; i++) { // repeat 5 times

bakeCookies();

}

frostCookies();

Copyright 2010 by Pearson Education
40

for loop syntax
for (initialization; test; update) {

statement;

statement;

...

statement;

}

 Perform initialization once.

 Repeat the following:

 Check if the test is true. If not, stop.

 Execute the statements.

 Perform the update.

body

header

Copyright 2010 by Pearson Education
41

Control structures
 Control structure: a programming construct that affects

the flow of a program's execution

 Controlled code may include one or more statements

 The for loop is an example of a looping control structure

Copyright 2010 by Pearson Education
42

Initialization
for (int i = 1; i <= 6; i++) {

System.out.println("I am so smart");

}

 Tells Java what variable to use in the loop

 The variable is called a loop counter

 can use any name, not just i

 can start at any value, not just 1

 only valid in the loop

 Performed once as the loop begins

Copyright 2010 by Pearson Education
43

Test
for (int i = 1; i <= 6; i++) {

System.out.println("I am so smart");

}

 Tests the loop counter variable against a limit

 Uses comparison operators:

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Copyright 2010 by Pearson Education
44

Increment and decrement
shortcuts to increase or decrease a variable's value by 1

Shorthand Equivalent longer version

variable++; variable = variable + 1;

variable--; variable = variable - 1;

int x = 2;

x++; // x = x + 1;

// x now stores 3

double gpa = 2.5;

gpa--; // gpa = gpa - 1;

// gpa now stores 1.5

Copyright 2010 by Pearson Education
45

Modify-and-assign operators

shortcuts to modify a variable's value

Shorthand Equivalent longer version

variable += value; variable = variable + value;

variable -= value; variable = variable - value;

variable *= value; variable = variable * value;

variable /= value; variable = variable / value;

variable %= value; variable = variable % value;

x += 3; // x = x + 3;

gpa -= 0.5; // gpa = gpa - 0.5;

number *= 2; // number = number * 2;

Copyright 2010 by Pearson Education
46

Repetition over a range
System.out.println("1 squared = " + 1 * 1);

System.out.println("2 squared = " + 2 * 2);

System.out.println("3 squared = " + 3 * 3);

System.out.println("4 squared = " + 4 * 4);

System.out.println("5 squared = " + 5 * 5);

System.out.println("6 squared = " + 6 * 6);

 Intuition: "I want to print a line for each number from 1 to 6"

 The for loop does exactly that!

for (int i = 1; i <= 6; i++) {

System.out.println(i + " squared = " + (i * i));

}

 "For each integer i from 1 through 6, print ..."

Copyright 2010 by Pearson Education
47

Loop walkthrough
for (int i = 1; i <= 4; i++) {

System.out.println(i + " squared = " + (i * i));

}

System.out.println("Whoo!");

Output:

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

Whoo!

1

1

2

2

3

3

4

4

5

5

Copyright 2010 by Pearson Education
50

System.out.print

 Prints without moving to a new line

 allows you to print partial messages on the same line

int highestTemp = 5;

for (int i = -3; i <= highestTemp / 2; i++) {

System.out.print((i * 1.8 + 32) + " ");

}

• Output:
26.6 28.4 30.2 32.0 33.8 35.6

• Concatenate " " to separate the numbers

Copyright 2010 by Pearson Education
51

Rocket Exercise
 Write a method that produces the following output:

T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff!

The end.

Copyright 2010 by Pearson Education
52

Counting down
 The update can use -- to make the loop count down.

 The test must say > instead of <

System.out.print("T-minus ");

for (int i = 10; i >= 1; i--) {

System.out.print(i + ", ");

}

System.out.println("blastoff!");

System.out.println("The end.");

 Output:

T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff!

The end.

