
Copyright 2010 by Pearson Education
1

CS& 141, Winter 2021
Lecture 6: Scanner; if/else; Strings, char

Copyright 2010 by Pearson Education

Interactive Programs
with Scanner

Copyright 2010 by Pearson Education
3

Interactive programs

interactive program: Reads input from the console.

 While the program runs, it asks the user to type input.

 The input typed by the user is stored in variables in the
code.

 Can be tricky; users are unpredictable and misbehave.

 But interactive programs have more interesting behavior.

Copyright 2010 by Pearson Education
4

Scanner

 Scanner: An object that can read input from many sources.

 Communicates with System.in

 Can also read from files, web sites, databases, …

 The Scanner class is found in the java.util package.

import java.util.*; // so you can use Scanner

 Constructing a Scanner object to read console input:

Scanner name = new Scanner(System.in);

 Example:

Scanner console = new Scanner(System.in);

Copyright 2010 by Pearson Education
5

Scanner methods

 Each method waits until the user presses Enter.

 The value typed by the user is returned.

System.out.print("How old are you? "); // prompt

int age = console.nextInt();

System.out.println("You typed " + age);

 prompt: A message telling the user what input to type.

Method Description

nextInt() reads an int from the user and returns it

nextDouble() reads a double from the user

next() reads a one-word String from the user

nextLine() reads a one-line String from the user

Copyright 2010 by Pearson Education
8

Input tokens
 token: A unit of user input, as read by the Scanner.

 Tokens are separated by whitespace (spaces, tabs, new lines).

 How many tokens appear on the following line of input?
23 John Smith 42.0 "Hello world" $2.50 " 19"

 When a token is not the type you ask for, it crashes.

System.out.print("What is your age? ");

int age = console.nextInt();

Output:

What is your age? Timmy

java.util.InputMismatchException

at java.util.Scanner.next(Unknown Source)

at java.util.Scanner.nextInt(Unknown Source)

...

Copyright 2010 by Pearson Education
9

Scanners as parameters
 If many methods need to read input, declare a Scanner in
main and pass it to the other methods as a parameter.

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

int sum = readSum3(console);

System.out.println("The sum is " + sum);

}

// Prompts for 3 numbers and returns their sum.

public static int readSum3(Scanner console) {

System.out.print("Type 3 numbers: ");

int num1 = console.nextInt();

int num2 = console.nextInt();

int num3 = console.nextInt();

return num1 + num2 + num3;

}

Copyright 2010 by Pearson Education
10

Nested if/else question

Formula for body mass index (BMI):

 Write a program that produces output like the following:
This program reads data for two people and
computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overweight
Person 2 BMI = 23.485824
normal
Difference = 4.3831045714285715

703
2
=

height

weight
BMI

BMI Weight class

below 18.5 underweight

18.5 - 24.9 normal

25.0 - 29.9 overweight

30.0 and up obese

Copyright 2010 by Pearson Education
11

Nested if/else answer
// This program computes two people's body mass index (BMI) and
// compares them. The code uses Scanner for input, and parameters/returns.

import java.util.*; // so that I can use Scanner

public class BMI {
public static void main(String[] args) {

introduction();
Scanner console = new Scanner(System.in);

double bmi1 = person(console);
double bmi2 = person(console);

// report overall results
report(1, bmi1);
report(2, bmi2);
System.out.println("Difference = " + Math.abs(bmi1 - bmi2));

}

// prints a welcome message explaining the program
public static void introduction() {

System.out.println("This program reads data for two people and");
System.out.println("computes their body mass index (BMI).");
System.out.println();

}
...

Copyright 2010 by Pearson Education
12

Nested if/else, cont'd.
// reads information for one person, computes their BMI, and returns it
public static double person(Scanner console) {

System.out.println("Enter next person's information:");
System.out.print("height (in inches)? ");
double height = console.nextDouble();

System.out.print("weight (in pounds)? ");
double weight = console.nextDouble();
System.out.println();

double bodyMass = bmi(height, weight);
return bodyMass;

}

// Computes/returns a person's BMI based on their height and weight.
public static double bmi(double height, double weight) {

return (weight * 703 / height / height);
}

// Outputs information about a person's BMI and weight status.
public static void report(int number, double bmi) {

System.out.println("Person " + number + " BMI = " + bmi);
if (bmi < 18.5) {

System.out.println("underweight");
} else if (bmi < 25) {

System.out.println("normal");
} else if (bmi < 30) {

System.out.println("overweight");
} else {

System.out.println("obese");
}

}
}

Copyright 2010 by Pearson Education

Advanced if/else

Copyright 2010 by Pearson Education
14

Nested if structures
 exactly 1 path (mutually exclusive)

if (test) {
statement(s);

} else if (test) {
statement(s);

} else {

statement(s);
}

 0 or 1 path (mutually exclusive)

if (test) {
statement(s);

} else if (test) {
statement(s);

} else if (test) {
statement(s);

}

 0, 1, or many paths (independent tests; not exclusive)

if (test) {
statement(s);

}

if (test) {
statement(s);

}

if (test) {
statement(s);

}

Copyright 2010 by Pearson Education
15

Which nested if/else?

 (1) if/if/if (2) nested if/else (3) nested if/else/if

 Whether a user is lower, middle, or upper-class based on income.

 (2) nested if / else if / else

 Whether you made the dean's list (GPA ≥ 3.8) or honor roll (3.5-3.8).

 (3) nested if / else if

 Whether a number is divisible by 2, 3, and/or 5.

 (1) sequential if / if / if

 Computing a grade of A, B, C, D, or F based on a percentage.

 (2) nested if / else if / else if / else if / else

Copyright 2010 by Pearson Education
16

The "dangling if" problem
 What can be improved about the following code?

if (x < 0) {

System.out.println("x is negative");

} else if (x >= 0) {

System.out.println("x is non-negative");

}

 The second if test is unnecessary and can be removed:

if (x < 0) {

System.out.println("x is negative");

} else {

System.out.println("x is non-negative");

}

 This is also relevant in methods that use ifwith return...

Copyright 2010 by Pearson Education
17

if/else with return
// Returns the larger of the two given integers.

public static int max(int a, int b) {

if (a > b) {

return a;

} else {

return b;

}

}

 Methods can return different values using if/else

 Whichever path the code enters, it will return that value.

 Returning a value causes a method to immediately exit.

 All paths through the code must reach a return statement.

Copyright 2010 by Pearson Education
18

All paths must return
public static int max(int a, int b) {

if (a > b) {
return a;

}
// Error: not all paths return a value

}

 The following also does not compile:

public static int max(int a, int b) {
if (a > b) {

return a;
} else if (b >= a) {

return b;
}

}

 The compiler thinks if/else/if code might skip all paths,
even though mathematically it must choose one or the other.

Copyright 2010 by Pearson Education
19

Relational expressions
 if statements and for loops both use logical tests.

for (int i = 1; i <= 10; i++) { ...

if (i <= 10) { ...

 These are boolean expressions, seen in Ch. 5.

 Tests use relational operators:

Operator Meaning Example Value

== equals 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

Copyright 2010 by Pearson Education
20

Logical operators

 Tests can be combined using logical operators:

 "Truth tables" for each, used with logical values p and q:

Operator Description Example Result

&& and (2 == 3) && (-1 < 5) false

|| or (2 == 3) || (-1 < 5) true

! not !(2 == 3) true

p q p && q p || q

true true true true

true false false true

false true false true

false false false false

p !p

true false

false true

Copyright 2010 by Pearson Education
21

Evaluating logical expressions
 Relational operators have lower precedence than math;

logical operators have lower precedence than relational
operators

5 * 7 >= 3 + 5 * (7 – 1) && 7 <= 11

5 * 7 >= 3 + 5 * 6 && 7 <= 11

35 >= 3 + 30 && 7 <= 11

35 >= 33 && 7 <= 11

true && true

true

 Relational operators cannot be "chained" as in algebra
2 <= x <= 10

true <= 10 (assume that x is 15)
Error!

 Instead, combine multiple tests with && or ||

2 <= x && x <= 10

true && false

false

Copyright 2010 by Pearson Education
22

Logical questions
 What is the result of each of the following expressions?

int x = 42;

int y = 17;

int z = 25;

 y < x && y <= z

 x % 2 == y % 2 || x % 2 == z % 2

 x <= y + z && x >= y + z

 !(x < y && x < z)

 (x + y) % 2 == 0 || !((z - y) % 2 == 0)

 Answers: true, false, true, true, false

Copyright 2010 by Pearson Education

Switch Statements

Copyright 2010 by Pearson Education
24

Switch statements
allows a variable to be tested for equality against a list of

values
switch(expression) {
case value :

Statements;
break; // optional

case value :

Statements;
break; // optional

default : // optional

Statements;
}

 expression must evaluate to an int, char, string
or a few other types we haven't seen yet

Copyright 2010 by Pearson Education
25

Example switch statement
char grade = console.next().charAt(0);

switch(grade) {

case 'A' :

System.out.println("Excellent!");

break;

case 'B' :

case 'C' :

System.out.println("Well done");

break;

case 'D' :

System.out.println("You passed");

case 'F' :

System.out.println("Better try again");

break;

default :

System.out.println("Invalid grade");

}

System.out.println("Your grade is " + grade);

 any number of
cases allowed

 once you match
a case, you will
continue
executing code
until a break

 switch
execution ends
as soon as
break is hit

Copyright 2010 by Pearson Education
26

if/else or switch statement?

 Should you use a switch statement for these
situations?

 Computing a grade of A, B, C, D, or F based on an integer percentage.

 Whether you made the dean's list (GPA ≥ 3.8) or honor roll (3.5-3.8).

 Whether a number is divisible by 2, 3, and/or 5.

 Printing out the name of a course based on a course code.

Copyright 2010 by Pearson Education

Cumulative algorithms

Copyright 2010 by Pearson Education
28

Adding many numbers
 How would you find the sum of all integers from 1-1000?

// This may require a lot of typing

int sum = 1 + 2 + 3 + 4 + ... ;

System.out.println("The sum is " + sum);

 What if we want the sum from 1 - 1,000,000?
Or the sum up to any maximum?

 How can we generalize the above code?

Copyright 2010 by Pearson Education
29

Cumulative sum loop
int sum = 0;

for (int i = 1; i <= 1000; i++) {

sum = sum + i;

}

System.out.println("The sum is " + sum);

 cumulative sum: A variable that keeps a sum in progress

and is updated repeatedly until summing is finished.

 The sum in the above code is an attempt at a cumulative sum.

 Cumulative sum variables must be declared outside the loops

that update them, so that they will still exist after the loop.

Copyright 2010 by Pearson Education
30

Cumulative product
 This cumulative idea can be used with other operators:

int product = 1;

for (int i = 1; i <= 20; i++) {

product = product * 2;

}

System.out.println("2 ^ 20 = " + product);

 How would we make the base and exponent adjustable?

Copyright 2010 by Pearson Education
31

Scanner and cumulative sum

 We can do a cumulative sum of user input:

Scanner console = new Scanner(System.in);

int sum = 0;

for (int i = 1; i <= 100; i++) {

System.out.print("Type a number: ");

sum = sum + console.nextInt();

}

System.out.println("The sum is " + sum);

Copyright 2010 by Pearson Education
32

Cumulative sum question
 Modify the Receipt program from earlier lectures.

 Prompt for how many people, and each person's dinner cost.

 Use static methods to structure the solution.

 Example log of execution:

How many people ate? 4

Person #1: How much did your dinner cost? 20.00

Person #2: How much did your dinner cost? 15

Person #3: How much did your dinner cost? 30.0

Person #4: How much did your dinner cost? 10.00

Subtotal: $75.0

Tax: $6.0

Tip: $11.25

Total: $92.25

Copyright 2010 by Pearson Education
33

Cumulative sum answer
// This program enhances our Receipt program using a cumulative sum.

import java.util.*;

public class Receipt2 {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

double subtotal = meals(console);

results(subtotal);

}

// Prompts for number of people and returns total meal subtotal.

public static double meals(Scanner console) {

System.out.print("How many people ate? ");

int people = console.nextInt();

double subtotal = 0.0; // cumulative sum

for (int i = 1; i <= people; i++) {

System.out.print("Person #" + i +

": How much did your dinner cost? ");

double personCost = console.nextDouble();

subtotal = subtotal + personCost; // add to sum

}

return subtotal;

}

...

Copyright 2010 by Pearson Education
34

Cumulative answer, cont'd.
...

// Calculates total owed, assuming 8% tax and 15% tip

public static void results(double subtotal) {

double tax = subtotal * .08;

double tip = subtotal * .15;

double total = subtotal + tax + tip;

System.out.println("Subtotal: $" + subtotal);

System.out.println("Tax: $" + tax);

System.out.println("Tip: $" + tip);

System.out.println("Total: $" + total);

}

}

Copyright 2010 by Pearson Education

Strings

Copyright 2010 by Pearson Education
36

Strings
 string: An object storing a sequence of text characters.

 Unlike most other objects, a String is not created with new.

String name = "text";

String name = expression;

 Examples:

String name = "Marla Singer";

int x = 3;

int y = 5;

String point = "(" + x + ", " + y + ")";

Copyright 2010 by Pearson Education
37

Objects (usage)
 object: An entity that contains data and behavior.

 data: variables inside the object

 behavior: methods inside the object

 You interact with the methods;
the data is hidden in the object.

 A class is a type of objects.

 Constructing (creating) an object:

Type objectName = new Type(parameters);

 Calling an object's method:

objectName.methodName(parameters);

Copyright 2010 by Pearson Education
38

Indexes
 Characters of a string are numbered with 0-based indexes:

String name = "Ultimate";

 First character's index : 0

 Last character's index : 1 less than the string's length

 The individual characters are values of type char (seen later)

index 0 1 2 3 4 5 6 7

character U l t i m a t e

Copyright 2010 by Pearson Education
39

String methods

 These methods are called using the dot notation:

String starz = "Yeezy & Hova";

System.out.println(starz.length()); // 12

Method name Description

indexOf(str) index where the start of the given string
appears in this string (-1 if not found)

length() number of characters in this string

substring(index1, index2)
or
substring(index1)

the characters in this string from index1
(inclusive) to index2 (exclusive);

if index2 is omitted, grabs till end of string

toLowerCase() a new string with all lowercase letters

toUpperCase() a new string with all uppercase letters

Copyright 2010 by Pearson Education
40

String method examples
// index 012345678901

String s1 = "Stuart Reges";

String s2 = "Marty Stepp";

System.out.println(s1.length()); // 12

System.out.println(s1.indexOf("e")); // 8

System.out.println(s1.substring(7, 10)); // "Reg"

String s3 = s2.substring(1, 7);

System.out.println(s3.toLowerCase()); // "arty s"

 Given the following string:

// index 0123456789012345678901

String book = "Building Java Programs";

 How would you extract the word "Java" ?

Copyright 2010 by Pearson Education
41

Modifying strings
 Methods like substring and toLowerCase build and return

a new string, rather than modifying the current string.

String s = "Aceyalone";

s.toUpperCase();

System.out.println(s); // Aceyalone

 To modify a variable's value, you must reassign it:

String s = "Aceyalone";

s = s.toUpperCase();

System.out.println(s); // ACEYALONE

Copyright 2010 by Pearson Education
42

Strings as user input
 Scanner's next method reads a word of input as a String.

Scanner console = new Scanner(System.in);

System.out.print("What is your name? ");

String name = console.next();

name = name.toUpperCase();

System.out.println(name + " has " + name.length() +

" letters and starts with " + name.substring(0, 1));

Output:

What is your name? Nas

NAS has 3 letters and starts with N

 The nextLine method reads a line of input as a String.

System.out.print("What is your address? ");

String address = console.nextLine();

Copyright 2010 by Pearson Education
44

Strings question
 Write a program that reads two people's first names and

suggests a name for their company

Example Output:

Founder 1 first name? Danielle

Founder 2 first name? John

Under 100 employees? yes

Suggested company name: JODANI

Founder 1 first name? Danielle

Founder 2 first name? John

Under 100 employees? n

Suggested company name: DANIJO

Copyright 2010 by Pearson Education
45

The equals method

 Objects are compared using a method named equals.

Scanner console = new Scanner(System.in);

System.out.print("What is your name? ");

String name = console.next();

if (name.equals("Lance")) {

System.out.println("Pain is temporary.");

System.out.println("Quitting lasts forever.");

}

 Technically this is a method that returns a value of type boolean,

the type used in logical tests.

Copyright 2010 by Pearson Education
46

String test methods

String name = console.next();

if(name.endsWith("Kweli")) {

System.out.println("Pay attention, you gotta listen to hear.");

} else if(name.equalsIgnoreCase("NaS")) {

System.out.println("I never sleep 'cause sleep is the cousin of

death.");

}

Method Description

equals(str) whether two strings contain the same characters

equalsIgnoreCase(str) whether two strings contain the same characters,
ignoring upper vs. lower case

startsWith(str) whether one contains other's characters at start

endsWith(str) whether one contains other's characters at end

contains(str) whether the given string is found within this one

Copyright 2010 by Pearson Education
47

Type char

 char : A primitive type representing single characters.

 Each character inside a String is stored as a char value.

 Literal char values are surrounded with apostrophe
(single-quote) marks, such as 'a' or '4' or '\n' or '\''

 It is legal to have variables, parameters, returns of type char

char letter = 'S';

System.out.println(letter); // S

 char values can be concatenated with strings.

char initial = 'P';

System.out.println(initial + " Diddy"); // P Diddy

Copyright 2010 by Pearson Education
48

The charAt method
 The chars in a String can be accessed using the charAt method.

String food = "cookie";

char firstLetter = food.charAt(0); // 'c'

System.out.println(firstLetter + " is for " + food);

System.out.println("That's good enough for me!");

 You can use a for loop to print or examine each character.

String major = "CS&";

for (int i = 0; i < major.length(); i++) {

char c = major.charAt(i);

System.out.println(c);

}

Output:
C

S

&

Copyright 2010 by Pearson Education
49

char vs. String

 "h" is a String
'h' is a char (the two behave differently)

 String is an object; it contains methods

String s = "h";

s = s.toUpperCase(); // 'H'

int len = s.length(); // 1

char first = s.charAt(0); // 'H'

 char is primitive; you can't call methods on it

char c = 'h';

c = c.toUpperCase(); // ERROR: "cannot be dereferenced"

 What is s + 1 ? What is c + 1 ?

 What is s + s ? What is c + c ?

Copyright 2010 by Pearson Education
50

char vs. int

 All char values are assigned numbers internally by the

computer, called ASCII values.

 Examples:

'A' is 65, 'B' is 66, ' ' is 32

'a' is 97, 'b' is 98, '*' is 42

 Mixing char and int causes automatic conversion to int.

'a' + 10 is 107, 'A' + 'A' is 130

 To convert an int into the equivalent char, type-cast it.

(char) ('a' + 2) is 'c'

Copyright 2010 by Pearson Education
51

Comparing char values

 You can compare char values with relational operators:

'a' < 'b' and 'X' == 'X' and 'Q' != 'q'

 An example that prints the alphabet:

for (char c = 'a'; c <= 'z'; c++) {

System.out.print(c);

}

 You can test the value of a string's character:

String word = console.next();

if (word.charAt(word.length() - 1) == 's') {

System.out.println(word + " is plural.");

}

Copyright 2010 by Pearson Education
52

String/char question

 A Caesar cipher is a simple encryption where a message is
encoded by shifting each letter by a given amount.

 e.g. with a shift of 3, A → D, H → K, X → A, and Z → C

 Write a program that reads a message from the user and
performs a Caesar cipher on its letters:

Your secret message: Brad thinks Angelina is cute

Your secret key: 3

The encoded message: eudg wklqnv dqjholqd lv fxwh

Copyright 2010 by Pearson Education
53

Strings answer 1
// This program reads a message and a secret key from the user and

// encrypts the message using a Caesar cipher, shifting each letter.

import java.util.*;

public class SecretMessage {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Your secret message: ");

String message = console.nextLine();

message = message.toLowerCase();

System.out.print("Your secret key: ");

int key = console.nextInt();

encode(message, key);

}

...

Copyright 2010 by Pearson Education
54

Strings answer 2
// This method encodes the given text string using a Caesar

// cipher, shifting each letter by the given number of places.

public static void encode(String text, int shift) {

System.out.print("The encoded message: ");

for (int i = 0; i < text.length(); i++) {

char letter = text.charAt(i);

// shift only letters (leave other characters alone)

if (letter >= 'a' && letter <= 'z') {

letter = (char) (letter + shift);

// may need to wrap around

if (letter > 'z') {

letter = (char) (letter - 26);

} else if (letter < 'a') {

letter = (char) (letter + 26);

}

}

System.out.print(letter);

}

System.out.println();

}

}

Copyright 2010 by Pearson Education

printf

Copyright 2010 by Pearson Education
56

Formatting text with printf

System.out.printf("format string", parameters);

 A format string can contain placeholders to insert parameters:

 %d integer

 %f real number

 %s string

 these placeholders are used instead of + concatenation

 Example:

int x = 3;

int y = -17;

System.out.printf("x is %d and y is %d!\n", x, y);

// x is 3 and y is -17!

 printf does not drop to the next line unless you write \n

Copyright 2010 by Pearson Education
57

printf width
 %Wd integer, W characters wide, right-aligned

 %-Wd integer, W characters wide, left-aligned

 %Wf real number, W characters wide, right-aligned

 ...

for (int i = 1; i <= 3; i++) {

for (int j = 1; j <= 10; j++) {

System.out.printf("%4d", (i * j));

}

System.out.println(); // to end the line

}

Output:
1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

Copyright 2010 by Pearson Education
58

printf precision
 %.Df real number, rounded to D digits after decimal

 %W.Df real number, W chars wide, D digits after decimal

 %-W.Df real number, W wide (left-align), D after decimal

double gpa = 3.253764;

System.out.printf("your GPA is %.1f\n", gpa);

System.out.printf("more precisely: %8.3f\n", gpa);

Output:

your GPA is 3.3

more precisely: 3.254

8

3

Copyright 2010 by Pearson Education
59

printf question

 Modify our Receipt program to better format its output.

 Display results in the format below, with 2 digits after .

 Example log of execution:

How many people ate? 4

Person #1: How much did your dinner cost? 20.00

Person #2: How much did your dinner cost? 15

Person #3: How much did your dinner cost? 25.0

Person #4: How much did your dinner cost? 10.00

Subtotal: $70.00

Tax: $5.60

Tip: $10.50

Total: $86.10

Copyright 2010 by Pearson Education
60

printf answer (partial)
...

// Calculates total owed, assuming 8% tax and 15% tip

public static void results(double subtotal) {

double tax = subtotal * .08;

double tip = subtotal * .15;

double total = subtotal + tax + tip;

// System.out.println("Subtotal: $" + subtotal);

// System.out.println("Tax: $" + tax);

// System.out.println("Tip: $" + tip);

// System.out.println("Total: $" + total);

System.out.printf("Subtotal: $%.2f\n", subtotal);

System.out.printf("Tax: $%.2f\n", tax);

System.out.printf("Tip: $%.2f\n", tip);

System.out.printf("Total: $%.2f\n", total);

}

}

