
Copyright 2010 by Pearson Education
1Punchline to a longer comic: http://www.smbc-comics.com/index.php?db=comics&id=2362#comic

CS& 141, Winter 2021
Lecture 9: Boolean; Assertions

http://www.smbc-comics.com/index.php?db=comics&id=2362#comic

Copyright 2010 by Pearson Education
2

Type boolean

 boolean: A logical type whose values are true and false.

 A logical test is actually a boolean expression.

 Like other types, it is legal to:
 create a boolean variable

 pass a boolean value as a parameter

 return a boolean value from methods

 call a method that returns a boolean and use it as a test

boolean minor = age < 21;

boolean isProf = name.contains("Prof");

boolean lovesCSE = true;

// allow only CSE-loving students over 21

if (minor || isProf || !lovesCSE) {

System.out.println("Can't enter the club!");

}

Copyright 2010 by Pearson Education
3

Using boolean

 Why is type boolean useful?

 Can capture a complex logical test result and use it later

 Can write a method that does a complex test and returns it

 Makes code more readable

 Can pass around the result of a logical test (as param/return)

boolean goodAge = age >= 12 && age < 29;

boolean goodHeight = height >= 78 && height < 84;

boolean rich = salary >= 100000.0;

if ((goodAge && goodHeight) || rich) {

System.out.println("Okay, let's go out!");

} else {

System.out.println("It's not you, it's me...");

}

Copyright 2010 by Pearson Education
5

"Boolean Zen", part 1
 Students new to boolean often test if a result is true:

if (isPrime(57) == true) { // bad

...

}

 But this is unnecessary and redundant. Preferred:

if (isPrime(57)) { // good

...

}

 A similar pattern can be used for a false test:

if (isPrime(57) == false) { // bad

if (!isPrime(57)) { // good

Copyright 2010 by Pearson Education
6

"Boolean Zen", part 2
 Methods that return boolean often have an
if/else that returns true or false:

public static boolean bothOdd(int n1, int n2) {

if (n1 % 2 != 0 && n2 % 2 != 0) {

return true;

} else {

return false;

}

}

 But the code above is unnecessarily verbose.

Copyright 2010 by Pearson Education
7

Solution w/ boolean variable

 We could store the result of the logical test.

public static boolean bothOdd(int n1, int n2) {

boolean test = (n1 % 2 != 0 && n2 % 2 != 0);

if (test) { // test == true

return true;

} else { // test == false

return false;

}

}

 Notice: Whatever test is, we want to return that.

 If test is true , we want to return true.

 If test is false, we want to return false.

Copyright 2010 by Pearson Education
8

Solution w/ "Boolean Zen"
 Observation: The if/else is unnecessary.

 The variable test stores a boolean value;

its value is exactly what you want to return. So return that!

public static boolean bothOdd(int n1, int n2) {

boolean test = (n1 % 2 != 0 && n2 % 2 != 0);

return test;

}

 An even shorter version:

 We don't even need the variable test.

We can just perform the test and return its result in one step.

public static boolean bothOdd(int n1, int n2) {

return (n1 % 2 != 0 && n2 % 2 != 0);

}

Copyright 2010 by Pearson Education
9

"Boolean Zen" template
 Replace

public static boolean name(parameters) {
if (test) {

return true;

} else {

return false;

}

}

• with

public static boolean name(parameters) {
return test;

}

Copyright 2010 by Pearson Education
10

De Morgan's Law
 De Morgan's Law: Rules used to negate boolean tests.

 Useful when you want the opposite of an existing test.

 Example:

Original Expression Negated Expression Alternative

a && b !a || !b !(a && b)

a || b !a && !b !(a || b)

Original Code Negated Code
if (x == 7 && y > 3) {

...

}

if (x != 7 || y <= 3) {

...

}

Copyright 2010 by Pearson Education
11

Boolean practice questions
 Write a method named isVowel that returns whether a
String is a vowel (a, e, i, o, or u), case-insensitively.

 isVowel("q") returns false

 isVowel("A") returns true

 isVowel("e") returns true

 Change the above method into an isNonVowel that returns
whether a String is any character except a vowel.

 isNonVowel("q") returns true

 isNonVowel("A") returns false

 isNonVowel("e") returns false

Copyright 2010 by Pearson Education
12

Boolean practice answers
// Enlightened version. I have seen the true way (and false way)

public static boolean isVowel(String s) {

return s.equalsIgnoreCase("a") || s.equalsIgnoreCase("e") ||

s.equalsIgnoreCase("i") || s.equalsIgnoreCase("o") ||

s.equalsIgnoreCase("u");

}

// Enlightened "Boolean Zen" version

public static boolean isNonVowel(String s) {

return !s.equalsIgnoreCase("a") && !s.equalsIgnoreCase("e") &&

!s.equalsIgnoreCase("i") && !s.equalsIgnoreCase("o") &&

!s.equalsIgnoreCase("u");

// or, return !isVowel(s);

}

Copyright 2010 by Pearson Education
13

When to return?
 Methods with loops and return values can be tricky.

 When and where should the method return its result?

 Write a method seven that accepts a Random parameter

and uses it to draw up to ten lotto numbers from 1-30.

 If any of the numbers is a lucky 7, the method should stop and
return true. If none of the ten are 7 it should return false.

 The method should print each number as it is drawn.

15 29 18 29 11 3 30 17 19 22 (first call)

29 5 29 4 7 (second call)

Copyright 2010 by Pearson Education
14

Flawed solution
// Draws 10 lotto numbers; returns true if one is 7.

public static boolean seven(Random rand) {

for (int i = 1; i <= 10; i++) {

int num = rand.nextInt(30) + 1;

System.out.print(num + " ");

if (num == 7) {

return true;

} else {

return false;

}

}

}

 The method always returns immediately after the first draw.

 This is wrong if that draw isn't a 7; we need to keep drawing.

Copyright 2010 by Pearson Education
15

Returning at the right time
// Draws 10 lotto numbers; returns true if one is 7.

public static boolean seven(Random rand) {

for (int i = 1; i <= 10; i++) {

int num = rand.nextInt(30) + 1;

System.out.print(num + " ");

if (num == 7) { // found lucky 7; can exit now

return true;

}

}

return false; // if we get here, there was no 7

}

 Returns true immediately if 7 is found.

 If 7 isn't found, the loop continues drawing lotto numbers.

 If all ten aren't 7, the loop ends and we return false.

Copyright 2010 by Pearson Education
16

Logical assertions
 assertion: A statement that is either true or false.

Examples:

 Java was created in 1995.

 The sky is purple.

 23 is a prime number.

 10 is greater than 20.

 x divided by 2 equals 7. (depends on the value of x)

 An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

Copyright 2010 by Pearson Education
17

Reasoning about assertions
 Suppose you have the following code:

if (x >= 3) {

// Point A

x--;

} else {

// Point B

x++;

// Point C

}

// Point D

 What do you know about x's value at the three points?

 Is x > 3? Always? Sometimes? Never?

Copyright 2010 by Pearson Education
18

Assertions in code
 We can make assertions about our code and ask whether they

are true at various points in the code.
 Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print("Type a nonnegative number: ");

double number = console.nextDouble();

// Point A: is number < 0.0 here?

while (number < 0.0) {

// Point B: is number < 0.0 here?

System.out.print("Negative; try again: ");

number = console.nextDouble();

// Point C: is number < 0.0 here?

}

// Point D: is number < 0.0 here?

(SOMETIMES)

(ALWAYS)

(SOMETIMES)

(NEVER)

Copyright 2010 by Pearson Education
19

Reasoning about assertions
 Right after a variable is initialized, its value is known:

int x = 3;

// is x > 0? ALWAYS

 In general you know nothing about parameters' values:
public static void mystery(int a, int b) {

// is a == 10? SOMETIMES

 But inside an if, while, etc., you may know something:
public static void mystery(int a, int b) {

if (a < 0) {

// is a == 10? NEVER

...

}

}

Copyright 2010 by Pearson Education
20

Assertions and loops
 At the start of a loop's body, the loop's test must be true:

while (y < 10) {

// is y < 10? ALWAYS

...

}

 After a loop, the loop's test must be false:
while (y < 10) {

...

}

// is y < 10? NEVER

 Inside a loop's body, the loop's test may become false:
while (y < 10) {

y++;

// is y < 10? SOMETIMES

}

Copyright 2010 by Pearson Education
21

"Sometimes"
 Things that cause a variable's value to be unknown

(often leads to "sometimes" answers):

 reading from a Scanner

 reading a number from a Random object

 a parameter's initial value to a method

 If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

 If you're unsure, "Sometimes" is a good guess.

Copyright 2010 by Pearson Education
22

Assertion example 1
public static void mystery(int x, int y) {

int z = 0;

// Point A

while (x >= y) {

// Point B

x = x - y;

z++;

if (x != y) {

// Point C

z = z * 2;

}

// Point D

}

// Point E

System.out.println(z);

}

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

SOMETIMES SOMETIMES ALWAYS

NEVER SOMETIMES SOMETIMES

SOMETIMES NEVER NEVER

SOMETIMES SOMETIMES NEVER

ALWAYS NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2010 by Pearson Education
23

Assertion example 2
public static int mystery(Scanner console) {

int prev = 0;

int count = 0;

int next = console.nextInt();

// Point A

while (next != 0) {

// Point B

if (next == prev) {

// Point C

count++;

}

prev = next;

next = console.nextInt();

// Point D

}

// Point E

return count;

}

next == 0 prev == 0 next == prev

Point A

Point B

Point C

Point D

Point E

SOMETIMES ALWAYS SOMETIMES

NEVER SOMETIMES SOMETIMES

NEVER NEVER ALWAYS

SOMETIMES NEVER SOMETIMES

ALWAYS SOMETIMES SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2010 by Pearson Education
24

Assertion example 3
// Assumes y >= 0, and returns x^y
public static int pow(int x, int y) {

int prod = 1;

// Point A
while (y > 0) {

// Point B
if (y % 2 == 0) {

// Point C
x = x * x;

y = y / 2;

// Point D
} else {

// Point E
prod = prod * x;

y--;

// Point F
}

}

// Point G
return prod;

}

y > 0 y % 2 == 0

Point A

Point B

Point C

Point D

Point E

Point F

Point G

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

y > 0 y % 2 == 0

Point A SOMETIMES SOMETIMES

Point B ALWAYS SOMETIMES

Point C ALWAYS ALWAYS

Point D ALWAYS SOMETIMES

Point E ALWAYS NEVER

Point F SOMETIMES ALWAYS

Point G NEVER ALWAYS

