//

CS& 141, Winter 2021

Lecture 9: Boolean; Assertions

HUMANS HRVENT PROGRAMMED ANYTUING IN DECADES.
ALL THE LANGUAGES AND \DEAS AND ThRGON ARE
JUST TO¥S N THE ROBOTS' SANDRBAX. TTHE REAL
PROGRAMMING HAPPENS KT A LOWER LEVEL, BUT
NONE QOF THE PROGRAMMERS KNOW \T.

WEIRD... THIS SUBROUTINE
WORKS NOW, BUT T QWEAR
T OONT CHANGE A
THING.

NOWADANS, WE'RE TJUST PART OF THE TUNK CODE.
DON'T BELIEVE ME? GO BUERD - COMPRRE PROGRAMMER
SPEAK TO C\RBER\SH- Geuemﬂue LPAMBATS.
CAN Y/ TELL THE O\EEERENCE?

T VSE PYLIBMC TO
TALK TO MEMCACHED
FROM DIMNGO.

Punchline to a longer comic:

_ Copyright 2010 by Pearson Education

http://www.smbc-comics.com/index.php?db=comics&id=2362#comic

Type boolean

* boolean: A logical type whose values are true and false.
» A logical test is actually a boolean expression.

» Like other types, it is legal to:
« create a boolean variable
e pass a boolean value as a parameter
« return a boolean value from methods
« call a method that returns a boolean and use it as a test

boolean minor = age < 21;

boolean 1i1sProf name.contains ("Prof") ;
boolean lovesCSE = true;

// allow only CSE-loving students over 21
if (minor || isProf || 'lovesCSE) {

Systemsoutiprant it Canttientersthessclub e
}

= Copyright 2010 by Pearson Education

////ﬂr :
Using boolean

e Why is type boolean useful?

» Can capture a complex logical test result and use it later

o Can write a method that does a complex test and returns it

» Makes code more readable

» Can pass around the result of a logical test (as param/return)

boolean goodAge = age >= 12 && age < 29;

boolean goodHeight = height >= 78 && height < 84;

boolean rich = salary >= 100000.0;

1f ((goodAge && goodHeight) || rich) {
System.out.println ("Okay, let's go out!");

} else {

Systemiouts prantin i sinot s you; sattstme i i)

}

= Copyright 2010 by Pearson Education

el
"Boolean Zen", part 1

o Students new to boolean often test if a result is true:

if (isPrime (57) == true) { // bad
}

e But this is unnecessary and redundant. Preferred:
if (isPrime (57)) { // good

}

* A similar pattern can be used for a false test:

if (isPrime (57) == false) { // bad
if ('isPrime (57)) { // good

; Copyright 2010 by Pearson Education

el
"Boolean Zen", part 2

e Methods that return boolean often have an
if/else that returns true or false:

public static boolean bothOdd (int nl, int n2) {
if (n1 $ 2 !'=0 & n2 $ 2 !'= 0) {
el N e e e T
} else {
return false;

}

» But the code above is unnecessarily verbose.

Copyright 2010 by Pearson Education

el
Solution w/ boolean variable

» We could store the result of the logical test.

publer sEabierbootecanbothOdditEntEinTrrrn BEn2)iy

boolean test = (n1 % 2 != 0 && n2 % 2 !'= 0);
if (test) { // test == true

return true;
} else { // test == false

return false;

}

» Notice: Whatever test is, we want to return that.
o If test is true , we want to return true.
o If test is false, we want to return false.

iR 7
Copyright 2010 by Pearson Education

——

Solution w/ "Boolean Zen"

e Observation: The if/else is unnecessary.

» The variable test stores a boolean value;
its value is exactly what you want to return. So return that!

20 O H O = B N e e OO D &Y Sy B AR GO B DI e S (16 0 s 0 8 Leaoy A AV e G e
boolean test = (nl % 2 !'= 0 && n2 % 2 !'= 0);
return test;

e An even shorter version:

» We don't even need the variable test.
We can just perform the test and return its result in one step.

pubiEEessEatirerbooEcans o e et aelsrtrniE a2
return (n1 $ 2 '=0 && n2 $ 2 '= 0);
}

Copyright 2010 by Pearson Education

R e
"Boolean Zen" template

* Replace

public static boolean name (parameters) {
if (test) {
return true;
} else {
return false;

}
}

e with

public static boolean name (parameters) {
return test;

}

— g 9
] —_— Copyright 2010 by Pearson Education

—

De Morgan's Law

* De Morgan's Law: Rules used to negate boolean tests.

» Useful when you want the opposite of an existing test.

Original Expression

Negated Expression

Alternative

a && b s e el o) '(a && D)
kel 'la && Db It rslaloy
 Example:

Original Code

Negated Code

SESE

}

(x == 7 && v > 3)

{ SEhafe B et R B

}

=

Copyright 2010 by Pearson Education

10

Boolean practice questions

* Write a method named isvowel that returns whether a
String is a vowel (a, e, i, 0, or u), case-insensitively.
* isVowel ("g") returns false
e isVowel ("A") returns true
e isVowel ("e") returns true

* Change the above method into an isNonvowel that returns
whether a string is any character except a vowel.

e isNonVowel ("g") returns true
e isNonVowel ("A") returns false
e isNonVowel ("e") returns false

11
Copyright 2010 by Pearson Education

Boolean practice answers

// Enlightened version. I have seen the true way (and false way)
public static boolean isVowel (String s) {

return s.equalsIgnoreCase("a
s.equalsIgnoreCase("1i") || s.equalsIgnoreCase ("
s.equalsIgnoreCase ("u");

") || s.equalsIgnoreCase ("e")
o

|
bl

// Enlightened "Boolean Zen" version
publiicrstatic booleanviisNonVowe LSt rings sy

return !s.equalsIgnoreCase("a") && !s.equalsIgnoreCase("e") &&
!s.equalsIgnoreCase("1") && !s.equalsIgnoreCase("o") &&
!s.equalsIgnoreCase ("u");
// or, return !'isVowel (s) ;
}
i
72

i om—— Copyright 2010 by Pearson Education

When to return?

* Methods with loops and return values can be tricky.
« When and where should the method return its result?

* Write a method seven that accepts a Random parameter
and uses it to draw up to ten lotto numbers from 1-30.

o If any of the numbers is a lucky 7, the method should stop and
return true. If none of the ten are 7 it should return false.

» The method should print each number as it is drawn.

S e e e Ve e (first call)
S ol (second call)

o 3551
Copyright 2010 by Pearson Education

//

Flawed solution

// Draws 10 lotto numbers; returns true if one is 7.
public static boolean seven (Random rand) {
9 R e o R 11 o A0t [L] B QOB o O T
B BRI AL LA A OIS P AN D PR E S E e DA D e e
SR ACEC T @It DR iisito B (SR I S e s

if (n == T7) {
return true;
} else {
return false;

}

» The method always returns immediately after the first draw.
» This is wrong if that draw isn't a 7; we need to keep drawing.

~_ Copyright 2010 by Pearson Education

R e

Returning at the right time

// Draws 10 lotto numbers; returns true if one is 7.
public static boolean seven (Random rand) {
9 R e o R 11 o A0t [L] B QOB o O T
B BRI AL LA A OIS P AN D PR E S E e DA D e e
SR ACEC T @It DR iisito B (SR I S e s

Ftn == 7) { // found lucky 7; can exit now
return true;

}
}

return false; // if we get here, there was no 7

Returns true immediately if 7 is found.

If 7 isn't found, the loop continues drawing lotto numbers.
If all ten aren't 7, the loop ends and we return false.

— 15
] —_— Copyright 2010 by Pearson Education

- .
Logical assertions

o assertion: A statement that is either true or false.

Examples:

» Java was created in 1995.

The sky is purple.

23 is a prime number.

10 is greater than 20.

x divided by 2 equals 7. (depends on the value of x)

* An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

o 16
= Copyright 2010 by Pearson Education

")?§,¢¢¢f’71/——
Reasoning about assertions

e Suppose you have the following code:

JefEeini (e sy
// Point A
YiSter

} else {

// Point B
D S
// Point C

;
// Point D

e What do you know about x's value at the three points?
e Isx > 3?7 Always? Sometimes? Never?

— 1574
e Copyright 2010 by Pearson Education

//
Assertions in code

» We can make assertions about our code and ask whether they
are true at various points in the code.

» Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print ("Type a nonnegative number: ");
double number = console.nextDouble () ;
// Point A: is number < 0.0 here? (SOMETIMES)

while (number < 0.0) {

// Point B: is number < 0.0 here? (ALWAYS)
System.out.print ("Negative; try again: ");
number = console.nextDouble () ;

// Point C: is number < 0.0 here? (SOMETIMES)

}

// Point D: is number < 0.0 here? (NEVER)

S 18
i Copyright 2010 by Pearson Education

//
Reasoning about assertions

e Right after a variable is initialized, its value is known:
S el B G
// is x > 0? ALWAYS

* In general you know nothing about parameters' values:
bl oE e i het- Rohive i de Mo Dl R TASK T - Rah v I g eRay- D Al g b ety o1 oo
// is a == 10? SOMETIMES

* But inside an if, while, etc., you may know something:
pablaicEstat raavol dEmyste ryatEntEaysirntail) s
SR s e AR
// is a == 10? NEVER

— 19
. Copyright 2010 by Pearson Education

’/;g%%/ff’i/~—
Assertions and loops

* At the start of a loop's body, the loop's test must be true:
while (y < 10) {

// is y < 10? ALWAYS

}

o After a loop, the loop's test must be false:
A RS Sent e R

}
// is y < 10? NEVER

* Inside a loop's body, the loop's test may become false:
e o 1)
Nty
// is y < 10? SOMETIMES
}

— 20
Ja Copyright 2010 by Pearson Education

/n “ - 1
Sometimes

* Things that cause a variable's value to be unknown
(often leads to "sometimes" answers):

» reading from a Scanner
» reading a number from a Random object

* a parameter's initial value to a method

e If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

o If you're unsure, "Sometimes" is a good guess.

Copyright 2010 by Pearson Education

g

Assertion example 1

O S e AR B M e A B e e B A S AN] G T rar e A B o e P |
S B R a
// Point A
W e s =) : : :
// Point B Which of the following assertions are
S e true at which point(s) in the code?
z++; Choose ALWAYS, NEVER, or SOMETIMES.
i ' G i v |
// Point C R S =)
} z =2z * 2; Point A | SOMETIMES | SOMETIMES | ALWAYS
Point B | NEVER SOMETIMES | SOMETIMES
// Point D _
Point C | SOMETIMES | NEVER NEVER
}
Point D | SOMETIMES | SOMETIMES | NEVER
// Point E Point E | ALWAYS NEVER SOMETIMES
R AR = 1 N I o 8 Ak a b S g
}
3 22

Copyright 2010 by Pearson Education

/<”§7%’ﬁ”’—f~’#ﬂMﬁ(.
Assertion example 2

public static int mystery(Scanner console)

int prev = 0;
AR N R IO BE § NE e O

A R B O K F—

QI ChRE G A Crt AN e SISl B B (o

// Point A

while

}

(next !'= 0) {
// Point B

if (next == prev) {
// Point C

PR R R e e

}

prev =
next =

// Point D

TrEsaess
consolarnextinE G

// Point E

return count;

Copyright 2010 by Pearson Education

{

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

e Ol S B et A
Point A | SOMETIMES | ALWAYS SOMETIMES
Point B | NEVER SOMETIMES | SOMETIMES
Point C | NEVER NEVER ALWAYS
Point D | SOMETIMES | NEVER SOMETIMES
Point E | ALWAYS SOMETIMES | SOMETIMES
23

//
Assertion example 3

// Assumes y >= 0, and returns x’y
SN o Y S S o ¥ B Y e M T g O O 1 1 B e o e s B A et i e
int prod = 1;

// Point A Which of the following assertions are
while (y > 0) { true at which point(s) in the code?
i Foit B _ o (Choose ALWAYS, NEVER, or SOMETIMES.
// Point C
e y > 0 y $ 2 ==
Versiiym/an Point A | SOMETIMES | SOMETIMES
// Point D
} else { Point B | ALWAYS SOMETIMES
// Point E
JAREN e S Nl e D G Point C | ALWAYS ALWAYS
Ve
// Point F Point D | ALWAYS SOMETIMES
) } Point E | ALWAYS NEVER
// Point G
return prod; Point F | SOMETIMES | ALWAYS
} Point G | NEVER ALWAYS

24
Copyright 2010 by Pearson Education

